The sensing diaphragm of a pressure transducer (PT), as supplied on an outdoor hydrogen compressor, unexpectedly ruptured and released approximately 0.1 kilograms hydrogen to atmosphere from the compressor discharge line. At time of incident, personnel nearby were alerted by a loud 'pop' and dust disturbance. Simultaneously, the facility monitoring system detected loss of the PT signal and initiated equipment shutdown. Facility personnel then closed isolation hand valves to stop the leak, locked and tagged out the equipment, and restricted the area. The failed component, a cigar type PT rated to 20,000 psi, originally supplied and installed by the manufacturer as part of the compressor package, was removed and inspected. Inspection revealed severed wires, a separated wire housing, view more

A safety research laboratory experienced two similar air-actuated ball valve failures in a 6-month period while performing hydrogen release experiments. The hydrogen release system contains a number of air-actuated ball valves which are sequenced by a Programmable Logic Controller (PLC) in order to obtain the desired release parameters. During an experimental release sequence, a PLC valve command failed to open the valve even though the PLC valve position confirm signal indicated the valve had opened. On further investigation, the valve actuator and valve stem were found to be moving correctly, but the valve was not opening. The system was depressurized and purged with nitrogen, and the valve was removed for inspection. Inspection required dismantling the valve, and in both incidents a view more

The hydrogen sensor at a hydrogen fueling station detected a slight leakage from the ground packing of the flow control valve during refueling. The refueling operation was stopped immediately. The leak was stopped by tightening the ground packing sealing screw, but it started leaking again in about a week.

The flow control valve was disassembled and inspected. Dust was found at the ground seal and the packing was distorted. Leakage was believed to be due to the dust invasion and repeated tightening of the sealing screw. The packing had been used for four years and two months without replacement.

The hydrogen fueling dispenser nozzle could not be completely disconnected from the vehicle after refueling. It was finally disconnected after trying several times. The cover of the nozzle interfered with the disconnection operation. No malfunction of the nozzle was found. It can be easily disconnected when it is withdrawn along its axis. Sometimes misalignment occurred due to the weight of the dispenser hose.

A hydrogen reformer furnace at a refinery was shutdown for maintenance to remove and cap the inlet and outlet headers of some radiant tubes that had previously developed hot spots and been isolated by externally pinching them off at the inlet. A decision was made to leave steam in the steam-generating circuit during this maintenance operation to prevent freezing. After maintenance was complete, the startup procedure required the furnace to be first heated up to 350°C (662°F) prior to introducing 4136 kPa (600 psig) steam into the radiant tubes. Just after the 4136 kPa (600 psig) startup steam was introduced into the reformer furnace inlet, the control room alarm journal reported an extreme positive pressure spike at the same time a single loud bang was reported by the operations view more

A hydrogen leak occurred at a plant's hydrogen fill station when a vendor's hydrogen fill truck trailer pulled away after filling and caught an improperly stored hydrogen fill line. The driver of the hydrogen truck trailer did not properly stow the hydrogen fill line after filling and failed to verify that the hydrogen fill line was clear of the trailer prior to departure. As the driver pulled away from the fill station, the hydrogen fill line caught on the trailer and subsequently pulled on the hydrogen fill station's ground storage tubes distribution manifold. The force of this pull bent the plant's hydrogen distribution manifold and hydrogen began leaking from a threaded connection and from the hydrogen fill line. The truck trailer driver reported hearing a view more

Hydrogen and water leakage in the main generator stator cooling water (SCW) equipment forced two separate shutdowns of a nuclear plant in a three-month period. Manufacturer weld defects on the SCW exciter end ring header are the likely cause for the hydrogen leakage.

The first nuclear plant shutdown was initiated in mid-May when an SCW leak internal to the main generator was confirmed. Events that led up to the shutdown decision started three days earlier and included an upward trend in stator coil temperatures. After two days of an elevated temperature trend, an SCW tank high-pressure alarm indicated hydrogen leakage. Per alarm response procedure, the operators vented the tank. Hydrogen leakage was determined to have increased from about 300 to 1400 ft3/day with stator water view more

On July 1, 2009, a plasma experiment was conducted to produce a small quantity of sodium borohydride from anhydrous sodium borate, methane, and hydrogen in an enclosed reaction chamber. The reactants were injected into an argon plasma flame to carry out the synthesis reaction.

After the run was completed, as per work control procedure, the experimenter removed the plasma torch from the top lid of the collection chamber and taped a piece of weighing paper over the opening so air would not get into the chamber and contaminate the product. The experimenter then installed a plastic glove bag over the top lid of the collection chamber and attached it just below the top lid using Velcro. Before final installation, the experimenter placed a screwdriver and a natural bristle paint brush view more

A hydrogen leak occurred from a 1-inch gate valve on a makeup gas line in an oil refinery gas oil hydrotreater unit. When the leak was discovered, the gas oil hydrotreater unit shutdown procedures were immediately implemented and emergency response was requested. The refinery response team along with county response teams responded, and after approximately 1/2 hour, the gas oil hydrotreater unit was fully shut down. Shutdown consisted of sufficiently depressurizing the unit and adding nitrogen to allow safe closing of the leaking 1-inch gate valve and installation of the associated missing bull plug.

During this event, the 1-inch gate valve was found to be open roughly 10% with no bull plug in the valve, allowing the hydrogen to leak to the atmosphere. In addition, a 1-inch bull view more

An instrument engineer at a hydrogen production facility was arresting the hydrogen leakage in tapping a pressure transmitter containing 131-bar hydrogen gas. The isolation valve was closed and the fittings near the pressure transmitter were loosened. The pressure dropped from 131 bar to 51 bar. The fitting was further loosened (though very little); the instrument tube slipped out of the ferrule and got pulled out of the fitting. With the sudden release of the 51-bar hydrogen, there was a loud pop (like a fire cracker) and the spark-proof tool was observed to have black spot on it. The volume of the hydrogen gas released was small, since it was in the tapping line only.

Key:

  • = No Ignition
  • = Explosion
  • = Fire
Hydrogen Incident Summaries by Equipment and Primary Cause/Issue
Equipment / Cause Equipment Design or Selection Component Failure Operational Error Installation or Maintenance Inadequate Gas or Flame Detection Emergency Shutdown Response Other or Unknown
Hydrogen Gas Metal Cylinder or Regulator   3/31/2012
4/30/1995
2/6/2013
4/26/2010 12/31/1969     3/17/1999
11/1/2001
12/23/2003
Piping/Valves 4/4/2002
2/2/2008
5/11/1999
4/20/1987
11/4/1997
12/31/1969
8/19/1986
7/27/1991
12/19/2004
2/6/2008
10/3/2008
4/5/2006
5/1/2007
9/19/2007
10/31/1980
2/7/2009 1/24/1999
2/24/2006
6/8/1998
12/31/1969
2/7/2009

9/1/1992
10/31/1980

10/3/2008  
Tubing/Fittings/Hose   9/23/1999
8/2/2004
8/6/2008
9/19/2007
1/1/1982 9/30/2004
10/7/2005
  10/7/2005  
Compressor   10/5/2009
6/10/2007
8/21/2008
1/15/2019
    10/5/2009 8/21/2008  
Liquid Hydrogen Tank or Delivery Truck 4/27/1989 12/19/2004
1/19/2009
8/6/2004 12/31/1969   1/1/1974 12/17/2004
Pressure Relief Device 7/25/2013
5/4/2012
1/15/2002
1/08/2007
12/31/1969        
Instrument 1/15/2019 3/17/1999
12/31/1969
2/6/2013
    11/13/73    
Hydrogen Generation Equipment 7/27/1999     10/23/2001      
Vehicle or Lift Truck   7/21/2011         2/8/2011
12/9/2010
Fuel Dispenser   8/2/2004
5/1/2007
6/11/2007
9/19/2007
  2/24/2006
1/22/2009
     
Fuel Cell Stack            

5/3/2004
12/9/2010
2/8/2011

Hydrogen Cooled Generator       12/31/1969
2/7/2009
     
Other (floor drain, lab
anaerobic chamber,
heated glassware,
test chamber,
gaseous hydrogen
composite cylinder,
delivery truck)
  11/14/1994
7/21/2011
7/27/1999
6/28/2010
8/21/2008
12/31/1969
3/22/2018
    6/10/2019
  • = No Ignition
  • = Explosion
  • = Fire