Severity
Incident
Leak
Yes
Ignition
Yes

A small hydrogen fire occurred in a chemical process hood. A chemist was performing an experiment reacting manganese dioxide with hydrogen to produce manganese oxide and water. The chemist had left the process, which would take approximately one hour to complete, and was working in a nearby lab. While the chemist was gone, a second worker heard a pop, saw the hydrogen fire in the hood, and requested the activation of a fire alarm. A third employee in the area activated a manual fire alarm. The chemist, upon hearing the fire alarm, returned to the room, shut off the hydrogen fuel supply, and evacuated the facility. The hydrogen fire lasted for approximately one minute. The remaining small fire was extinguished about 10 minutes later with a HALON portable fire extinguisher by a radiological control technician (RCT) assigned to the area when he entered to survey the room. The glass front on the hood was cracked, and except for the damage done to the glass column and equipment used in the process, there was no other damage.

The direct cause for this occurrence involved an equipment/material problem, defective or failed part. The glassware column used in the chemical reduction process failed. A hole developed in the side of the glassware column that allowed hydrogen to escape and be ignited by the heat tape wrapped around the glass tube. Due to the glass fire involvement, it could not be determined if the glassware column had failed or if the heat tape failed and created a hot spot which eventually caused a hole to develop in the glassware column. However, the glassware column that failed was used previously to perform this same process.

Incident Date
Nov 14, 1994
Setting
Equipment
  • Laboratory Equipment
  • Glassware
Damage and Injuries
Probable Cause
Contributing Factors
When Incident Discovered
Lessons Learned

Laboratory accidents can happen despite the best preparation and careful attention to procedures. However, the lesson to be learned here is that employees must always be sure they understand the hazards of the activities, and that they know how to respond to emergencies. This is accomplished through on-going training in emergency procedures, and in understanding the procedures and equipment.

Key:

  • = No Ignition
  • = Explosion
  • = Fire
Hydrogen Incident Summaries by Equipment and Primary Cause/Issue
Equipment / Cause Equipment Design or Selection Component Failure Operational Error Installation or Maintenance Inadequate Gas or Flame Detection Emergency Shutdown Response Other or Unknown
Hydrogen Gas Metal Cylinder or Regulator   3/31/2012
4/30/1995
2/6/2013
4/26/2010 12/31/1969     3/17/1999
11/1/2001
12/23/2003
Piping/Valves 4/4/2002
2/2/2008
5/11/1999
4/20/1987
11/4/1997
12/31/1969
8/19/1986
7/27/1991
12/19/2004
2/6/2008
10/3/2008
4/5/2006
5/1/2007
9/19/2007
10/31/1980
2/7/2009 1/24/1999
2/24/2006
6/8/1998
12/31/1969
2/7/2009

9/1/1992
10/31/1980

10/3/2008  
Tubing/Fittings/Hose   9/23/1999
8/2/2004
8/6/2008
9/19/2007
1/1/1982 9/30/2004
10/7/2005
  10/7/2005  
Compressor   10/5/2009
6/10/2007
8/21/2008
1/15/2019
    10/5/2009 8/21/2008  
Liquid Hydrogen Tank or Delivery Truck 4/27/1989 12/19/2004
1/19/2009
8/6/2004 12/31/1969   1/1/1974 12/17/2004
Pressure Relief Device 7/25/2013
5/4/2012
1/15/2002
1/08/2007
12/31/1969        
Instrument 1/15/2019 3/17/1999
12/31/1969
2/6/2013
    11/13/73    
Hydrogen Generation Equipment 7/27/1999     10/23/2001      
Vehicle or Lift Truck   7/21/2011         2/8/2011
12/9/2010
Fuel Dispenser   8/2/2004
5/1/2007
6/11/2007
9/19/2007
  2/24/2006
1/22/2009
     
Fuel Cell Stack            

5/3/2004
12/9/2010
2/8/2011

Hydrogen Cooled Generator       12/31/1969
2/7/2009
     
Other (floor drain, lab
anaerobic chamber,
heated glassware,
test chamber,
gaseous hydrogen
composite cylinder,
delivery truck)
  11/14/1994
7/21/2011
7/27/1999
6/28/2010
8/21/2008
12/31/1969
3/22/2018
    6/10/2019
  • = No Ignition
  • = Explosion
  • = Fire