What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

Summary

A hydrogen generation plant experienced a fire and significant damage due to a concussive combustion event that started in a high-pressure hydrogen feed pipe.

System Description

A certain hydrogen plant is designed to continuously produce hydrogen at a purity of 99.75% and at a rate of 510 m3 per day. Hydrogen is produced in two banks of cells filled with a strong solution of caustic soda. Current is passed through the cells to produce hydrogen and oxygen. The oxygen is vented directly to the atmosphere, while the hydrogen is piped to the gasholder. The gasholder is a low-pressure storage vessel capable of storing 28 m3 of gas. It is constructed in two parts. The bottom section is a large round tank. The upper section is an inverted tank or bell that is view more

During an inspection, three potential safety problems were identified concerning the location of a hydrogen storage facility. The hydrogen storage facility is located on a building's roof, which is made of 30-inch-thick reinforced concrete. The following potential safety problems were identified during the inspection:

Leakage of hydrogen gas from the storage facility in proximity to the air intakes of the building's ventilation system may introduce a flammable or explosive gas mixture into the enclosure. Because the hydrogen storage facility, containing four 8,000-scf hydrogen tanks at up to 2,450 psig, is Seismic Category II, a seismic event may result in a hydrogen leak. Furthermore, the pressure relief valves in the hydrogen facility exhaust downward to within 6 view more

A fire occurred in a hydrogen storage facility. The fire was reported by an employee who saw the fire start after he had aligned valves at the hydrogen storage facility in preparation for putting the hydrogen injection system into service. The employee escaped injury because he was wearing fire-retardant protective clothing and was able to quickly scale a 7-foot-high fence enclosing the hydrogen area. The local fire brigade was dispatched and offsite fire fighting assistance was requested. Upon reaching the scene, the local fire department reported seeing a large hydrogen-fueled fire in the vicinity of the hydrogen tube trailer unit. The heat of the fire potentially endangered the nearby hydrogen storage tanks. The onsite fire department, with offsite fire fighting support, fought the view more

Hydrogen was stored in a plant in a 42 ½ ft diameter sphere made of 3/16 inch steel. The sphere was partitioned into two hemispheres by a neoprene diaphragm attached around the equator. Hydrogen was stored under the diaphragm, while the upper hemisphere contained air. An explosion-proof fan was situated in the upper portion of the sphere in order to provide a slight positive pressure on the top of the diaphragm.

When the plant was shut down for a local holiday, the fan on top of the hydrogen sphere was also stopped. During plant startup two days later, a violent explosion occurred in the sphere. The sphere shell was torn into many sections by the explosion, and some of the sections were propelled as far as 1,200 ft. Some of these sections struck flammable liquid storage tanks view more

A liquid hydrogen neutron moderator developed a leak between the canister that contains liquid hydrogen and the insulating vacuum jacket.

The moderator assembly consists of an exterior metal vacuum jacket with an interior metal transfer line and canister that contain liquid hydrogen. The moderator canister is constructed of aluminum and is approximately five inches wide, five inches high, and two inches deep. The liquid hydrogen supply lines to the moderator canister are constructed of stainless steel. The operating temperature of the moderator varies from -420 degrees Fahrenheit to a possible 300 degrees Fahrenheit. Mechanical operators discovered a leak following a cleaning operation on the moderator. The cleaning operation was performed to remove impurities that could freeze view more

Installation of a 9000-gallon liquid hydrogen storage tank by a lessee at a building has not been evaluated for effect on the Safety Authorization Basis (SAB) of nearby facilities.

During review of an Emergency Management Hazard Assessment document, a reviewer questioned whether the SAB of nearby facilities had been reviewed for the effect of the installed 9000-gallon liquid hydrogen tank. Reviews by the facility management and facility safety personnel confirmed the evaluations have not been performed.

The direct cause was determined to be a management problem, with policy not adequately defined, disseminated, or enforced to integrate potential lessee hazards into the facility safety program documentation on the 9000-gallon hydrogen tank and delivery. The existing policy view more

While refilling the hydrogen system after an outage caused by a power failure, the excess flow valve located at the hydrogen tank tripped, but did not go fully shut.

The large valve is equipped with a small bypass valve so that the valve can be pressurized on both sides as is required before the valve can be reset. The O-ring which makes this small valve gas tight was deformed and improperly seated, thus allowing gas to flow to each side of the large valve. This permitted the valve to trip normally, but not to seat properly. The following is the manufacturer's evaluation after disassembly and inspection of the valve.

This valve was recently installed to provide excess flow protection to the underground portion of the hydrogen system piping and to provide redundant view more

The bulkhead between a liquid hydrogen tank and a liquid oxygen tank failed due to a series of events. Air services to the building were shut down for repairs and the facility had switched to an emergency nitrogen supply. Failure to switch back to service air when it became available, led to the mishap.

The emergency supply became depleted and two valves in the normal nitrogen purge system failed in the open position, releasing the high-pressure nitrogen gas from the manifold into the liquid hydrogen tank. The gas flow raised the liquid hydrogen tank pressure to 4.5 psig. That was sufficient to rupture the bulkhead wall.

Incident Synopsis
During development tests, a gaseous H2 test tank was over pressurized and ruptured. The tank dome was destroyed.

Cause
The pressure relief valves were set too high. In addition, the tank was not depressurized while being worked on. Safe distances, as required by the procedures for personnel safety, were not followed.

Incident Synopsis
While attempting to replace a rupture disk in a liquid H2 vessel, H2 gas was released and ignited. In fighting the fire, liquid N2 was sprayed onto a second liquid H2 vessel located nearby. This resulted in cracking of the outer mild steel vacuum jacket. The loss of the vacuum caused a rapid increase in pressure and rupture of the burst disk of the second vessel. H2 boiled off and was burned in the fire.

Cause
The rupture disk was being replaced with a load of liquid H2 in the vessel and no separating inerting gas. The H2-air mixture was probably ignited by static discharges. Rupture of the second vessel burst disk was caused by the low-temperature exposure of the mild steel vacuum jacket.