- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
Disclaimer: The Lessons Learned Database includes the incidents that were voluntarily submitted. The database is not a comprehensive source for all incidents that have occurred.
Based on the results of the company investigation and analysis of an amateur video, the company determined that the incident could have been caused by the failure of one of the following plant components:
· pipes leading to the reactor pressure gauges
· the recycled quench gas pipe at the bottom of the reactor
· the diathermic oil pipe (hot oil) entering or exiting the heat exchanger
· the heat exchanger flanged joints and connection lines.
The company determined that a release from the hot oil circuit could not have triggered the fire, based on the evidence from the pressure data in the circuit, which showed that the failure occurred 30 minutes after the fire started. The video confirms the pipe rupture 30 minutes after the fire began. For the same reason, a release from the hydrogen pipes is not considered likely, as the records demonstrate that the hydrogen pipe failed seven minutes after the fire began. When the heat exchanger flanged joints were dismantled, it was seen that the joint gaskets were not damaged. Thus, the company considers the failure of a pipe from the reactor pressure measurement gauges to be the most likely cause of the accident (although there is no conclusive evidence to identify the specific failure that caused the pipe to rupture). This assumption is supported by the following facts:
· This pipe is located in the area corresponding to the epicenter of the fire.
· The area corresponds to the area visually identified by the witnesses.
· The product release (hydrogen and fuel oil) from one of these pipes can cause a 6-meter long jet flame, as occurred.
· The product supposedly released would have had a high enough temperature and pressure to self-ignite or ignite against a plant hot spot (e.g., the hot oil circuit).
· The damages recorded were caused by overheating (flame exposition) and were not caused by overpressure or explosion. The pressure measurement records confirm no significant pressure changes at the beginning of the event.
The company decided to rebuild the hydrotreatment plant, in compliance with regulations, and to introduce the following process design changes:
· complete separation of the light fuel oil section and the heavy fuel oil section to avoid the possibility of "domino effects"
· lowering the maximum height of the heat exchanger installations from 25 meters to 15 meters to facilitate fire-extinguishing operations
· redesign of the piping system to minimize adjacencies
· relocation of the valves on the hydrogen quench line to enable depressurization
· reduction of the number of measurement gauges
· insertion of valves in a safe area for depressurizing the hot oil circuit.
The root cause of the fire that burned the evaporator pad and distorted the plastic evaporator pad bracket remains unknown. The initial investigation did not reveal any obvious signs of an ignition source in the vicinity of the forklift operation. The on-board data acquisition system did not indicate any abnormalities in the operating parameters of the fuel cell system (e.g., temperature, pressure, voltage, current). The fuel cell was disassembled, but no evidence was found of any electrical shorts or other potential ignition sources. Thus it was concluded that the fuel cell unit itself was not the ignition source for this incident.
One theory presented the possibility of a spark (caused by static electricity) being the source of the ignition that caused the fire. Due to the proximity of the fuel cell unit to a shrink-wrap packaging machine at the time of the incident, this seemed to be a plausible hypothesis. However, sparking tests on evaporator pad materials failed to confirm this, and it seems highly unlikely that a wet evaporator pad would ignite from static electricity. The true ignition source for this incident remains unknown.
After the initial investigation, the company used a hydrogen meter to monitor hydrogen levels near the evaporator pad during fuel cell start-up (which they expected to be the highest, due to a system purge). They also wanted to investigate if hydrogen could become trapped near the vent covering the evaporator pad. The tests indicated hydrogen levels well below the lower flammability limit (0.022%). Similar readings were also detected from the exhaust on the other make/model fuel cells operating in the facility. They detected no sign that high levels of hydrogen were trapped near the vent of any fuel cell make/model.
It appears that this was an isolated event caused by human error. The lessons learned are: (1) to caution workers to maintain their focus during fuel cell stack assembly, (2) to require verification that all tools and spare parts are accounted for prior to closing up the system, and (3) to review quality control procedures and assembly procedures with an eye toward improvement.
Because the bottle was located outside at the time of the event, and the hydrogen did not find a source of ignition while venting through the relief valve, nothing serious happened. The failed regulator was replaced and operations continued. However, if this had happened indoors or an otherwise enclosed space, the outcome could have been much worse.
The installed pressure relief valve and the small size of the orifice in the regulator (although allowing high-pressure gas to the low-pressure side of the regulator the mass flow rate is rather low) should be adequate protection of the rest of the system.
The key aspects of what can be learned from this near-miss can be emphasized as follows:
As stated on the MSDS and also on the container labels, LiAlH4 should be handled under argon. LiAlH4 is advertised and sold as a powder. If the researcher had to scrape it out of the jar, then it was no longer a powder, which seems indicative of past reaction that may have been due to exposure to atmospheric moisture.
The manufacturer stated that they do not have any first-hand data suggesting that friction alone could cause ignition. All of their handling of LiAlH4 is performed inside a glove bag under an argon atmosphere, so they have never had a fire during the packaging process. They recommend handling LiAlH4 under argon in a glove box or glove bag to minimize oxygen and moisture contact and, therefore, minimize the chance of a fire.
The university ES&H department did some searching online and found several relevant websites that provide confirmation that friction alone in the presence of air may be able to ignite LiAlH4.
http://cameochemicals.noaa.gov/chemical/989
http://www.chemicalbook.com/ChemicalProductProperty_EN_CB7318252.htm
http://www.erowid.org/chemicals/dmt/dmt_synthesis1.shtml (scroll down to step 3)
http://web.princeton.edu/sites/ehs/labsafetymanual/cheminfo/lah.htm
Since the university has adopted the following standard operating procedures, there has not been a reoccurrence of this type of incident:
During charging, most batteries will off gas hydrogen, making adequate ventilation and the elimination of ignition sources critical attributes of the charging area. Data from the battery manufacturer should be consulted to determine appropriate ventilation requirements for the specific battery being used.
In the future, the battery compartment on the boat will be ventilated to prevent another incident from occurring.
1. The trailer involved in the incident used a frangible burst disk based upon the proprietary metal compound designated as Inconel #600. Random sampling of similar pressure relief devices from the same trailer showed that all of them failed at pressures below design specification, indicating that all were adversely affected by exposure to the combination of stresses and the product lading (hydrogen). Examination of all other hydrogen trailers in the supplier's fleet confirmed that different (Carpenter 20-based) pressure relief devices were in service.
2. There has been no specific industry guidance on the type of pressure relief device materials in terms of their metallurgical makeup, but only the pressure ratings associated with the DOT rating of the tubes to which they are attached. This is based upon 5/3 of the marked DOT service pressure of the tube (e.g., 2400 psi tube X 5 ÷ 3 = 4000 psi pressure relief device rating).
3. The cause of the frangible disk failure was an anomaly. All frangible disks on the trailer were replaced. Prior to placing tube trailer back into hydrogen service, all tube trailer appurtenances were examined for leaks using nitrogen at two succeeding pressures and standard leak detection fluid. A third and final examination was performed at full settled pressure before releasing the tube trailer back into hydrogen service.
LESSONS LEARNED:
CORRECTIVE ACTIONS:
1. Increase physical protection, shielding, and securing of transported hydrogen tube valves, piping, and fittings from multi-directional forces that are likely to occur during accidents, including rollovers. Reference: 49 Code of Federal Regulations [CFR] 173.301.
2. Provide training to emergency responders on the unique chemical and flammability properties of hydrogen, including its nearly invisible flame during daylight hours and its tendency to rise quickly since it is 14 times lighter than air.
1. Management must ensure that operating decisions are not based primarily on cost and production. Performance goals and operating risks must be effectively communicated to all employees. Facility management must set safe, achievable operating limits and not tolerate deviations from these limits. Risks of deviation from operating limits must be fully understood by operators. Also, management must provide an operating environment conducive for operators to follow emergency shutdown procedures when required.
2. Process instrumentation and controls should be designed to consider human factors consistent with good industry practice. Hydroprocessing reactor temperature controls should be consolidated with all necessary data available in the control room. Some backup system of temperature indicators should be used so that the reactors can be operated safely in case of instrument malfunction. Each alarm system should be designed to allow critical emergency alarms to be distinguished from other operating alarms.
3. Adequate supervision is needed for operators, especially to address critical or abnormal situations. Supervisors need to ensure that all required procedures are followed. Supervisors should identify and address all operating hazards and conduct thorough investigation of deviations to determine root causes and take corrective action. Equipment and job performance issues related to operating incidents should be corrected by management.
4. Facilities should maintain equipment integrity and discontinue operation if integrity is compromised. Hydroprocessing operations especially need to have reliable temperature monitoring systems and emergency shutdown equipment. Equipment should be tested regularly and practice emergency drills should be held on a regular basis. Maintenance and instrumentation support should be available during start up after equipment installation or major maintenance.
5. Management must ensure that operators receive regular training on the unit process operations and chemistry. For hydrocrackers, this should include training on reaction kinetics and the causes and control of temperature excursions. Operators need to be trained on the limitations of process instruments and how to handle instrument malfunctions. Facilities need to ensure that operators receive regular training on the use of the emergency shutdown systems and the need to activate these systems.
6. Management must develop written operating procedures for all phases of hydrocracker operations. The procedures should include operating limits and consequences of deviation from the limits. The procedures should be reviewed regularly and updated to reflect changes in equipment, process chemistry, and operation. As appropriate, the procedures should be updated to include recommendations from process hazard analysis and incident investigations.
7. Process hazard analysis must be based on actual equipment and operating conditions that exist at the time of the analysis. The analysis should include the failure of critical operating systems, such as temperature monitors or emergency operating systems. A Management of Change review should be conducted for all changes to equipment or processes, as necessary, and should include a safety hazard review of the changes.
More information on management of change can be found in the Lessons Learned Corner and also in the Hydrogen Safety Best Practices Manual.
Additional details regarding probable causes and lessons learned can be found in Attachment 2.
The following corrective actions have been taken:
1. Evaluate any change in normal procedures or conditions for storage of aluminum hydride products. In this case, the aluminum hydride material was typically stored at -35°C in the glove box freezer. However, due to a change in glove boxes, this was no longer an option. Since commercially available aluminum hydride compound is shipped in glass bottles at room temperature, it was assumed that this was considered safe handling. The vial was stable for 6 weeks before the near miss occurred.
2. Limit aluminum hydride materials to small quantities as needed for immediate use. Larger samples have the potential to caused more damage.
3. Do not store aluminum hydride materials for extended periods of time and promptly dispose of any remaining material after use.
4. In-process aluminum hydride material should be stored at lower temperatures (i.e., in a freezer) and in an air-free contained environment (i.e., inside an air-free glove box) to reduce or slow decomposition into volatile materials (e.g., hydrogen, aluminum metal, and similar). In this case, if the aluminum hydride material had been stored in air, it is likely that a fire may have started.
5. Store aluminum hydride material in plastic containers instead of sealed glass containers to avoid catastrophic failure of containment. In this case, it is likely that the decomposition process of the aluminum hydride compound slowly built up pressure sufficient to destroy the glass vial.
Additional discussion about working with reactive metal-hydride materials in the laboratory can be found in the Lessons Learned Corner on this website and in the Hydrogen Safety Best Practices Manual.
The packing in the flow control valve should be replaced periodically. A planned investigation will determine the optimum time period for packing replacement.
More information on management of change can be found in the Lessons Learned Corner and also in the Hydrogen Safety Best Practices Manual.
The following recommended actions were identified:
The importance of purging hydrogen piping and equipment is discussed in the Lessons Learned Corner on this website.
Additional discussion about working with reactive metal-hydride materials in the laboratory can be found in the Lessons Learned Corner on this website and in the Hydrogen Safety Best Practices Manual.
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.