Skip to main content

Rupture of Refinery Heat Exchanger

Severity
Incident
Was Hydrogen Released?
Yes
Was There Ignition?
Yes
Incident Date
Incident Attributes
Describe the incident, including corrective steps taken and their result.

A petroleum refinery experienced a catastrophic rupture at one bank of three heat exchangers in a catalytic reformer/naphtha hydrotreater unit because of high temperature hydrogen attack (HTHA). Hydrogen and naphtha at more than 500F were released from the ruptured heat exchanger and ignited, causing an explosion and an intense fire burned for more than three hours.

The rupture fatally injured seven employees working in the immediate vicinity of heat exchanger at the time of the incident. The workers were in the final stages of a start-up activity to put a parallel bank of three heat exchangers back in service following cleaning. Such start-up activities had resulted in frequent leaks and occasional fires in the past and should have been considered as hazardous and nonroutine.

The damage of the specific heat exchanger was the result of its carbon steel being severly weakened by HTHA, a mechanism that results in fissures and cracking which occurs when the material is exposed to hydrogen at high temperatures and pressures, severely degarding the mechanical properties of the steel. API Recommended Practice 941 (Steels for Hydrogen Service at Elevated Temperatures and pressures in Petroleum Refnieries and Petrochemical Plants) provides Nelson curves to predict the occurrence of HTHA in various materials of construction. These curves are predicated on past equipment failure incidents and are plotted based upon self-reported process conditions. An investigative computer reconstruction of the ruptured heat exchanger estimated that exchanger was operating in a safe region of the Nelson curves where HTHA could not occur. API Recommended Practice 581 (Risk-Based Inspection Technology) allows users to calculate a damage factor to determine HTHA susceptibility of various materials of construction, rather than requiring users to actually verify operating conditions when determining applicable damage mechanisms.

Lessons Learned
  1. Carbon steel Nelson curve methodology cannot be depended on to prevent HTHA equipment failures and cannot be reliably used to predict the occurrence of HTHA equipment damage. Revisions to recommended practices should be considered regarding the use of carbon steel in HTHA-susceptible service and the verification of actual operating conditions.
  2. Given the difficulty of inspecting for HTHA because the damage might not be detected, inherently safer design is a better approach to prevent HTHA.
  3. Process hazards analysis (PHA) and damage mechanism hazard reviews (DMHRs) need to carefully consider all assumptions, periodically if necessary, to ensure that hazard identification, safeguards and control of hazards to prevent equipment failure are effective.
  4. Effective programs need to be in place to manage and provide oversight for hazardous nonroutine work.

Key:

  • = No Ignition
  • = Explosion
  • = Fire
Hydrogen Incident Summaries by Equipment and Primary Cause/Issue
Equipment / CauseEquipment Design or SelectionComponent FailureOperational ErrorInstallation or MaintenanceInadequate Gas or Flame DetectionEmergency Shutdown ResponseOther or Unknown
Hydrogen Gas Metal Cylinder or Regulator 3/31/2012
4/30/1995
2/6/2013
4/26/201012/31/1969  3/17/1999
11/1/2001
12/23/2003
Piping/Valves4/4/2002
2/2/2008
5/11/1999
4/20/1987
11/4/1997
12/31/1969
8/19/1986
7/27/1991
12/19/2004
2/6/2008
10/3/2008
4/5/2006
5/1/2007
9/19/2007
10/31/1980
2/7/20091/24/1999
2/24/2006
6/8/1998
12/31/1969
2/7/2009
9/1/1992
10/31/1980
10/3/2008 
Tubing/Fittings/Hose 9/23/1999
8/2/2004
8/6/2008
9/19/2007
1/1/19829/30/2004
10/7/2005
 10/7/2005 
Compressor 10/5/2009
6/10/2007
8/21/2008
1/15/2019
  10/5/20098/21/2008 
Liquid Hydrogen Tank or Delivery Truck4/27/198912/19/2004
1/19/2009
8/6/200412/31/1969 1/1/197412/17/2004
Pressure Relief Device7/25/2013
5/4/2012
1/15/2002
1/08/2007
12/31/1969    
Instrument1/15/20193/17/1999
12/31/1969
2/6/2013
  11/13/73  
Hydrogen Generation Equipment7/27/1999  10/23/2001   
Vehicle or Lift Truck 7/21/2011    2/8/2011
12/9/2010
Fuel Dispenser 8/2/2004
5/1/2007
6/11/2007
9/19/2007
 2/24/2006
1/22/2009
   
Fuel Cell Stack      5/3/2004
12/9/2010
2/8/2011
Hydrogen Cooled Generator   12/31/1969
2/7/2009
   
Other (floor drain, lab
anaerobic chamber,
heated glassware,
test chamber,
gaseous hydrogen
composite cylinder,
delivery truck)
 11/14/1994
7/21/2011
7/27/1999
6/28/2010
8/21/2008
12/31/1969
3/22/2018
  6/10/2019
  • = No Ignition
  • = Explosion
  • = Fire
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts