Automated Hydrogen Ball Valve Fails to Open due to Valve Stem Failure

First Name
Andy
Last Name
Piatt

A safety research laboratory experienced two similar air-actuated ball valve failures in a 6-month period while performing hydrogen release experiments. The hydrogen release system contains a number of air-actuated ball valves which are sequenced by a Programmable Logic Controller (PLC) in order to obtain the desired release parameters. During an experimental release sequence, a PLC valve command failed to open the valve even though the PLC valve position confirm signal indicated the valve had opened.

High-Pressure Burst Disk Failure

First Name
Andy
Last Name
Piatt

An operation to increase the pressure within a hydrogen tube-trailer to 6000 psig was in progress when a burst disk failed at approximately 5200 psig and hydrogen was released. A vent line attached to the burst disk was not sufficiently anchored and bent outward violently from the thrust of the release over an approximate 4-inch moment arm, causing considerable damage to the adjacent vent system components. The operation is conducted with personnel present, but fortunately no one was in proximity when the burst disk failed.

Hydrogen Vent Blow Down

First Name
Andy
Last Name
Piatt

Hydrogen was released near the ground when the vent line from a 13,000-gallon liquid hydrogen storage vessel suffered damage from unusually high winds. The toppled vent line did not shear or tear, but sustained a kink that restricted hydrogen flow and created a back pressure on the vessel relief system.

Repair efforts were hampered by the potential for cold hydrogen gas, a flammability hazard, in the work area. Shut off or redirection of the hydrogen was not possible, and variable breezes made set up of safe zones uncertain. A protocol had not been prepared for this scenario.

Two 55-Gallon Drums Rupture due to Over-Pressurization and Release Contents

First Name
Andy
Last Name
Piatt

An over-pressurization of two 55-gallon drums of waste phosphoric acid resulted in a material failure of the drum bottoms, releasing the contents of both drums (about 100 gallons) onto the facility floor. The spillage was collected within the sumps that are part of the facility's spill control system. The waste material had been packaged into DOT-specified containers earlier that day and the drums were placed into an assigned storage cell. That evening a staff member heard a noise in the high bay where hazardous wastes are stored.

Pressure Relief Device Fails at Fueling Station

First Name
Andy
Last Name
Piatt

A pressure relief device (PRD) valve failed on a high-pressure storage tube at a hydrogen fueling station, causing the release of approximately 300 kilograms of hydrogen gas. The gas ignited at the exit of the vent pipe and burned for 2-1/2 hours until technicians were permitted by the local fire department to enter the station and stop the flow of gas. During this incident the fire department evacuated nearby businesses and an elementary school, closed adjacent streets, and ordered a high school to shelter in place.

Rupture of Refinery Heat Exchanger

First Name
Andy
Last Name
Piatt

A petroleum refinery experienced a catastrophic rupture at one bank of three heat exchangers in a catalytic reformer/naphtha hydrotreater unit because of high temperature hydrogen attack (HTHA). Hydrogen and naphtha at more than 500F were released from the ruptured heat exchanger and ignited, causing an explosion and an intense fire burned for more than three hours.

Pipe Ruptures during Hydrogen Regeneration of Catalyst

First Name
Andy
Last Name
Piatt

A distillate dewaxing unit at an oil refinery was undergoing hot hydrogen regeneration of the catalyst when an explosion occurred. Catalyst regeneration is a periodically performed procedure, in which the normal liquid hydrocarbon feed is stopped and a hydrogen-rich gas mixture is fed through the catalyst bed for which the normal operating temperature is raised from 700F to 800F. During the catalyst regeneration process the reactor pressure is increased from normal operating levels just below 600 psig to about 640 psig.

Subscribe to Material Incompatibility