Skip to main content

Vacuum-Jacketed Piping

Cryogenic liquid hydrogen piping systems should have minimum heat gain to reduce vaporization losses and to avoid formation of ice on the pipes from condensation of water vapor in the air. One good approach is to use vacuum-insulated piping.

Vacuum-jacketed piping must be designed to be adequately flexible to absorb thermal contraction without causing excess stress.

Flexible sections should be connected with adequate slack or compression when warm so they won't be excessively stretched when the system is cooled to operating temperature.

The jacket design should consider the thermal flexibility of the inner pipe and allow the jacket to follow its natural thermal displacement. The vacuum jacket should have its own pressure-relief system. The presence of ice on the jacket indicates that a leak may have occurred in the vacuum jacket.

Non-vacuum-jacketed insulation should be oxygen-compatible due to the possibility of liquid air formation. "Air will condense at liquid hydrogen temperatures and can become an oxygen-enriched liquid due to the vaporization of nitrogen. Oxygen-enriched air increases the combustion rate of flammable and combustible materials." (See Air Products reference below.)

 


References

Air Products Safetygram for Liquid Hydrogen (pdf, 524 kb)


We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts