What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

A fire occurred in a hydrogen storage facility. The fire was reported by an employee who saw the fire start after he had aligned valves at the hydrogen storage facility in preparation for putting the hydrogen injection system into service. The employee escaped injury because he was wearing fire-retardant protective clothing and was able to quickly scale a 7-foot-high fence enclosing the hydrogen area. The local fire brigade was dispatched and offsite fire fighting assistance was requested. Upon reaching the scene, the local fire department reported seeing a large hydrogen-fueled fire in the vicinity of the hydrogen tube trailer unit. The heat of the fire potentially endangered the nearby hydrogen storage tanks. The onsite fire department, with offsite fire fighting support, fought the view more

Hydrogen was stored in a plant in a 42 ½ ft diameter sphere made of 3/16 inch steel. The sphere was partitioned into two hemispheres by a neoprene diaphragm attached around the equator. Hydrogen was stored under the diaphragm, while the upper hemisphere contained air. An explosion-proof fan was situated in the upper portion of the sphere in order to provide a slight positive pressure on the top of the diaphragm.

When the plant was shut down for a local holiday, the fan on top of the hydrogen sphere was also stopped. During plant startup two days later, a violent explosion occurred in the sphere. The sphere shell was torn into many sections by the explosion, and some of the sections were propelled as far as 1,200 ft. Some of these sections struck flammable liquid storage tanks view more

An anhydrous hydrogen fluoride (AHF) lecture bottle spontaneously exploded in a laboratory. No one was injured, but the lab was extensively damaged. The lecture bottle had split along its seam. Its cap and valve assembly were located to the immediate left.

Cause
The explosion was caused by hydrogen gas pressure build up in the cylinder. AHF comes in carbon steel cylinders as a liquefied gas under a pressure of 0.9 psi at 70 oF (i.e., the vapor pressure of the liquid). Though cylinders should be passivated with fluorine, which forms a protective coating, over time AHF may slowly react with the iron in a cylinder to form iron fluoride and hydrogen gas. The generation of hydrogen gas may produce cylinder pressures as high as several hundred psi.

A person working in a hydrogen lab unknowingly closed the wrong hydrogen valve and proceeded to loosen a fitting in one of the hydrogen gas lines. The pressure in the 1/4"-diameter hydrogen line was approximately 110 psig. Hydrogen escaped from the loosened fitting and the pressure release resulted in the tubing completely detaching and falling to the floor. The person noted seeing a white stream around the hydrogen jet leak. The person noted a color change and noise change as the leak ignited (this happened in a matter seconds and he did not have a chance to react). The person left the lab and pushed the emergency stop button. Someone else pulled the fire alarm. Both of these actions were designed to close the main hydrogen solenoid (shutoff) valve. The local emergency response view more

Liquid Waste Disposition Projects (LWDP) has experienced repetitive events involving Hydrogen Monitor/LFL Analyzer degradations over the last year. There have been 12 reportables in the last two years. As a result, a determination was made to issue a recurring occurrence report referencing management concern as its reporting criteria.

Engineering has recently made significant progress in further defining issues and potential corrective actions necessary to address the lower flammability limit (LFL) failures. The engineering path forward to resolution of this issue addresses potential failure contributors, among these are: Drift - This phenomenon is being closely assessed. Initial tests indicate the monitor power supply may be a significant contributor to instability resulting view more

One morning a saltwell pump was placed in operation. Operation of this equipment requires that the Standard Hydrogen Monitoring System (SHMS) cabinet be in operation. Later that morning, during the morning surveillance rounds, the Standard Hydrogen Monitoring System (SHMS) cabinet was found not to be in the operational mode.

On the previous day, the night shift saltwell operator assigned to run the saltwell pump had placed the SHMS monitor in operational mode; however, the saltwell system was not started at this time. Shift turnover was conducted and the condition of the SHMS was turned over to the appropriate saltwell operator and shift manager. During the day shift the day shift operator assigned to the complex received approval from the operations engineer to place the SHMS view more

A violent reaction occurred while hydrolyzing metal in water. The reactive metal treatment began with a review of the chemical inventory and setup of reaction vessels. The sodium metal was cut in shavings and added one at a time to the reaction vessel. After the second addition, an argon purge was added to disperse hydrogen gas faster. After approximately 10 pieces had been treated, the glass beaker shattered, releasing the contents of the reaction vessel (1 liter) inside the hood and causing the chemist's hand to receive superficial cuts. The process was being performed under a hood with all safety equipment in place. The employee was in personal protective equipment (PPE), but did receive two cuts on his hand through the glove. The treatment of reactive metals was being view more

A facility representative observed pipe-fitters enter a containment tent around a riser with a tool bag that contained a mixture of steel and copper/beryllium tools. The top flange was loosened using a copper/beryllium socket and a steel torque wrench. When questioned, the pipe-fitters correctly stated that this was allowable for initial loosening and tightening of these bolts. A copper/beryllium ratchet was used to accomplish the bolt removal. The bonded riser was shifted to allow access for the IH technician. The standard hydrogen monitoring system (SHMS) cabinet and local sample showed no hydrogen/flammable gas was present.

While the continuous vapor sample was being taken, the pipe-fitters proceeded to put together the copper/beryllium ratchet and socket with a 10" view more

A 30-milliliter (mL) vacuum bulb, equipped with a glass stopcock, containing one gram of pentacarbonyl manganese hydride exploded in a refrigerator. This caused the breakage of three other containers, releasing some contents into the refrigerator. The chemicals did not react. The refrigerator contained numerous reactive and flammable chemicals, mostly in glass containers.

The damaged containers were removed and relocated under a hood. The refrigerator was then examined for other breakage and inventoried. All breakage was cleaned up. The safety coordinator was notified and began an investigation.

The direct cause of the occurrence was the failure of a glass vacuum bulb, which either fractured due to some unforeseen chemical reaction forming hydrogen gas, or was unable to view more

The interior of a small high-temperature furnace, approximately 24 inches high by 18 inches wide, became contaminated with an unknown material later identified as magnesium. The furnace was disassembled to clean the unknown material from the interior surfaces, and while attempting to clean the bottom of the furnace, the technician tapped the upper lip of the furnace with a spatula and the magnesium flashed. The technician was stepping back from the furnace when the magnesium flashed. He received minor eye irritation and his eyebrows were singed.

Later that week the same technician was attempting to clean the interior surfaces of the top of the furnace and sprayed, as directed, the interior of the top with a water-based cleaning liquid which consisted of 91% water. He stepped view more