The sensing diaphragm of a pressure transducer (PT), as supplied on an outdoor hydrogen compressor, unexpectedly ruptured and released approximately 0.1 kilograms hydrogen to atmosphere from the compressor discharge line. At time of incident, personnel nearby were alerted by a loud 'pop' and dust disturbance. Simultaneously, the facility monitoring system detected loss of the PT signal and initiated equipment shutdown. Facility personnel then closed isolation hand valves to stop the leak, locked and tagged out the equipment, and restricted the area. The failed component, a cigar type PT rated to 20,000 psi, originally supplied and installed by the manufacturer as part of the compressor package, was removed and inspected. Inspection revealed severed wires, a separated wire housing, view more

A previously identified generator hydrogen gas leakage into the stator cooling water system exceeded the predetermined maximum operational allowance and the nuclear plant was shut down from 100 percent power in accordance with plant operating procedures. The leak was identified by monitoring the stator water cooling system detraining tank. Following reactor shut down and generator rotor removal, a small hole was located in the collector end winding area of a slot on the top stator bar. A small particle of carbon steel (estimated to be 2 mm/0.078 inch by 0.6 mm/0.023 inch) is believed to have caused the damage. The source of the carbon steel particle was either foreign material introduced during previous generator internal work or from a phenomenon called "back-of-core burning view more

A 9,000-gallon (34,069-liter) cryogenic liquid hydrogen storage vessel, installed outdoors at a manufacturing plant in an urban area, over-pressurized and released hydrogen into the atmosphere through a safety relief device (burst disk). When the burst disk released pressure, a loud bang was heard by neighbors and reported to the local police. The police investigated and heard the sound of gaseous hydrogen escaping from the vessel's vent stack, which rose approximately 15-20 feet (4.6-6.1 meters) in the air.

Police called the local fire department. Firefighters entered the facility and told employees inside that there was an explosion on the property and they needed to evacuate. As a precautionary measure, some nearby city buildings were also evacuated and the street was view more

Within the International Space Station (ISS) oxygen generator, an increase in differential pressure across a pump supplying return water to a PEM electrolyzer fuel cell stack had persisted over a 4-month period and was approaching the shut-off limit for the system. This decrease in performance was suspected to be caused by water-borne catalyst fines containing platinum black and Teflon®* binder materials, shed by the fuel cell stack, and accumulated within the pump's inlet filter. Maintenance in the field was required.

The system had been designed for factory maintenance, and no contingency had been planned to handle field maintenance for such a circumstance. An initial assessment of hazards for the proposed filter maintenance raised the concern that opening the water line view more

An operation to increase the pressure within a hydrogen tube-trailer to 6000 psig was in progress when a burst disk failed at approximately 5200 psig and hydrogen was released. A vent line attached to the burst disk was not sufficiently anchored and bent outward violently from the thrust of the release over an approximate 4-inch moment arm, causing considerable damage to the adjacent vent system components. The operation is conducted with personnel present, but fortunately no one was in proximity when the burst disk failed.

Following the incident, the damaged portion of the tube bank, consisting of 6 tubes, was isolated by valves on the system manifold. The operation was resumed with the unaffected portion of the tube bank, possessing another 18 tubes, until a second burst disk view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more

Near the end of the process of filling a gaseous hydrogen tube trailer at a liquid hydrogen transfilling station, a safety pressure-relief device (PRD) rupture disc on one of the tube trailer’s ten tubes burst and vented hydrogen gas. The PRD vent tube directed gas to the top of the trailer where the hydrogen vented and ignited, blowing a flame straight up in the air. The operator filling the tube trailer heard a loud explosion from the sudden release of hydrogen gas and saw flames immediately. The operator closed the main fill valve on the tube trailer, stopping the hydrogen fill; however, the ten cylinders on the tube trailer were almost full (2500 psig/173 bar). The tube trailer involved in this incident was one of two tube trailers being filled simultaneously and was second in a view more

A closed 20-mL glass scintillation vial containing approximately 5 grams of an aluminum hydride compound ruptured and shattered, likely due to pressure buildup after 6 weeks of storage. The glass vial with aluminum hydride compound was stored inside a closed plastic box. The plastic box with vial was stored within an air-free glove box at room temperature. When the glass vial ruptured, the vial was contained within the plastic box; however, the plastic box door was forced slightly ajar. The ruptured containers and internal materials were fully contained within the glove box. No damage was observed to the glove box and no one was injured. The attached photograph shows the remains of the vial within the plastic box.

A vehicle fill was initiated by the operator. During the hose pressurization step, a leak was observed at the breakaway fitting. The operator pressed the emergency stop to terminate the fill.

A valve packing started to leak during cold ambient temperatures. A technician was dispatched. He first reduced the pressure to minimize the release and then re-tightened the packing to stop the leak.