The over-pressurization of a laboratory ball mill reactor designed for operation under slightly elevated pressures resulted in a serious injury. The apparatus had been routinely operated under argon and hydrogen pressures of 5-10 atmospheres for nearly two years. The apparatus had not been tested for operation at pressures greater than 10 atm.

A visiting intern, frustrated in attempts to hydrogenate magnesium silicide through ball milling in the previously noted pressure range, attempted to perform the operation at higher pressures. The approximately 70-ml reactor was loaded in a glove box with 0.5 g of magnesium silicide and six milling balls. Upon pressurization to 80 atmospheres, a 270-degree rupture occurred around the perimeter of the reactor. The blow-out of the reactor view more

A single-stage diaphragm compressor failed during boosting of high-pressure hydrogen ground storage banks. The compressor sources hydrogen from a 44 MPa storage bank as suction and discharges it at a stop set point of 85 MPa. The compressor capacity is 0.71 m3/min (25 scfm).

The original notice of failure was through an inter-diaphragm pressure indication and alarm. There should not be any pressure build-up between the layers of the diaphragm. Upon opening, hydraulic oil was found, leading to the assumption that the hydraulic-side diaphragm was leaking. Although spare diaphragms and seals were available for on-site repair, difficulty was encountered in attempting to remove the compressor nut above the diaphragms. Similar difficulties were encountered when the unit was returned view more

Two fitting failures were experienced for fueling equipment filling systems. Both fittings were installed in the system thermal chamber experiencing ambient temperatures of -40C to +50C. They were connected in high-pressure lines used for 70MPa hydrogen fueling.

The first fitting, a 0.25-inch NPT hose connection, was in service for approximately one year with no signs of leakage. The failure was noticed when the system was pressurized during a filling sequence. The failure was discovered by an audible hissing noise during leak checking. The system was depressurized and the fitting removed and replaced. The system was re-pressurized with no further leakage.

When attempting to reconnect a second fitting, a double-ferrule high-pressure connection, the fitting in question view more

The subject needle valve was used primarily for manual filling to control the flow rate of hydrogen from storage banks to the 70MPa test system. The valve was installed on the exterior of the thermal chamber in ambient temperatures of -5C to +30C. The gas flowing through the valve was at conditioned temperatures of -40C to +50C. The valve was in service for approximately two years and 400 fill operations.

Failure occurred during a test under an open valve condition. When attempting to close the valve, the turning force increased and the technician was unable to completely close the valve. An upstream ball valve was closed to isolate the flow.

An explosion at a coal-fired power plant killed one person and injured 10 others. The blast killed the delivery truck driver who was unloading compressed hydrogen gas, which is used to cool the plant's steam generators. Hydrogen deliveries are routine at the plant, occurring about once a week. Evidence pointed to the premature failure of a pressure-relief device (PRD) rupture disk, which had been repaired by the vendor six months prior to the explosion.

Hydrogen and chlorine concentrations at a certain plant are measured once each shift. On the morning of the explosion, the hydrogen concentration in the chlorine header leaving the cell bank was 0.47 percent. After passing through the chlorine coolers and liquid/gas separators, the hydrogen concentration of the gas streams increased to 2.5-3.2 percent H2, i.e., 63-80 percent of the lower flammability limit.

About 5 hours after the measurements were made, the DC power to the electrolysis cell bank was shut down because of intermittent power supply problems. At that time, a low-order explosion was heard from the chlorine dryer area of the plant. Thirty seconds later, chlorine gas began escaping from the chlorine header pumps, and another explosion occurred in the electrolysis cell view more

The sensing diaphragm of a pressure transducer (PT), as supplied on an outdoor hydrogen compressor, unexpectedly ruptured and released approximately 0.1 kilograms hydrogen to atmosphere from the compressor discharge line. At time of incident, personnel nearby were alerted by a loud 'pop' and dust disturbance. Simultaneously, the facility monitoring system detected loss of the PT signal and initiated equipment shutdown. Facility personnel then closed isolation hand valves to stop the leak, locked and tagged out the equipment, and restricted the area. The failed component, a cigar type PT rated to 20,000 psi, originally supplied and installed by the manufacturer as part of the compressor package, was removed and inspected. Inspection revealed severed wires, a separated wire housing, view more

Overview: A pipe end containing fuel oil corroded at the outlet of a heat exchanger on the outlet side of a desulfurization reactor. The corroded pipe end leaked hydrogen gas, which exploded, causing oil to leak from the heat exchanger. The leaking oil developed into an oil fire, and the damage spread. The causes of the pipe end corrosion include the following:

There was a high concentration of corrosive substances in the process injection water.
The concentration of corrosive substances increased due to re-molding the heat exchangers.
The shape of the pipe cap was dead end piping.

Incident: During normal operations at a fuel oil refinery, a pipe end in a desulfurization unit developed a hydrogen leak, which led to an explosion. The pipe end was located on view more

Overview

The catalyst in a dehydrogenation reactor, which was usually operated under a hydrogen atmosphere, was changed while the reactor was isolated from the peripheral equipment by closing a 20-inch remotely controlled valve. The hydrogen pressure in the peripheral equipment was set at 20 KPaG, and the reactor was opened to the atmosphere. Anticipating some hydrogen leakage, suction from the piping was accomplished with a vacuum device and, nitrogen sealing was performed. When the piping connections were restored after changing the catalyst, flames spouted from the flange clearance and two workers were burned. One cause of the fire was poor management of the catalyst replacement process.

Incident Synopsis

A catalyst exchange was carried out in a dehydrogenation view more

Overview

Hydrogen leaked from the outlet piping of a hydrogen heating furnace at a fuel oil desulfurization cracking unit during normal refinery operation. The leaking hydrogen caused a localized fire. Dilution water for cleaning polythionic acid collected in the drain nozzle after a turnaround shutdown. The chlorine concentration in this dilution water was high because its concentration in the industrial water was originally high. The chlorine in the industrial water was concentrated by the high temperature, after the plant was restarted, and stress corrosion cracking occurred. Hydrogen leaked and was ignited by static electricity or heat.

Incident 

A fire occurred at the fuel oil desulfurization cracking unit of a refinery 257 hours after startup of the plant, view more