In the fall of 2007, the operations team began a procedure (a written procedure was being followed) to sample the liquid hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess gaseous hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003.

The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight-inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic gaseous nitrogen (GN2) systems in the view more

A rupture disc blew on a 20,000-gallon liquid hydrogen tank, causing the vent stack to exhaust cold gaseous hydrogen. Emergency responders were called to the scene. To stabilize the tank, the remaining hydrogen was removed from the tank except for a small volume in the heel of the tank that could not be removed manually. The tank vacuum was lost. Firemen sprayed the tank with water and directed a stream onto the fire exiting the vent stack. The water was channeled directly into the open vent stack, and the exiting residual hydrogen gas (between -423 F and -402 F) caused the water in the vent stack to freeze. The water freezing caused the vent stack to be sealed off, disabling the only exit for the cold hydrogen gas. After a time, the residual hydrogen gas in the tank warmed up, causing view more

A leaking liquid hydrogen cryogenic pump shaft during the process of filling a gaseous tube delivery trailer to 2400 psi at a liquid hydrogen transfilling location caused a series of explosions and a fire. After approximately 30 minutes of filling, the operator heard a single loud explosion and then saw flames and ripples from heat generation near the ground in the hydrogen fill area. The operator quickly actuated the emergency alarm system that shut down the cryogenic pump and closed the air-actuated valves on the cryogenic pump supply line. After this shutdown, three smaller explosions were heard as well as the sound of gas releasing from a safety relief valve. The fire department was called to the scene and participated in the final shutdown of the hydrogen system as the fire was view more

A 9,000-gallon (34,069-liter) cryogenic liquid hydrogen storage vessel, installed outdoors at a manufacturing plant in an urban area, over-pressurized and released hydrogen into the atmosphere through a safety relief device (burst disk). When the burst disk released pressure, a loud bang was heard by neighbors and reported to the local police. The police investigated and heard the sound of gaseous hydrogen escaping from the vessel's vent stack, which rose approximately 15-20 feet (4.6-6.1 meters) in the air.

Police called the local fire department. Firefighters entered the facility and told employees inside that there was an explosion on the property and they needed to evacuate. As a precautionary measure, some nearby city buildings were also evacuated and the street was view more

A valve packing started to leak during cold ambient temperatures. A technician was dispatched. He first reduced the pressure to minimize the release and then re-tightened the packing to stop the leak.

The bulkhead between a liquid hydrogen tank and a liquid oxygen tank failed due to a series of events. Air services to the building were shut down for repairs and the facility had switched to an emergency nitrogen supply. Failure to switch back to service air when it became available, led to the mishap.

The emergency supply became depleted and two valves in the normal nitrogen purge system failed in the open position, releasing the high-pressure nitrogen gas from the manifold into the liquid hydrogen tank. The gas flow raised the liquid hydrogen tank pressure to 4.5 psig. That was sufficient to rupture the bulkhead wall.

Incident Synopsis
During development tests, a gaseous H2 test tank was over pressurized and ruptured. The tank dome was destroyed.

Cause
The pressure relief valves were set too high. In addition, the tank was not depressurized while being worked on. Safe distances, as required by the procedures for personnel safety, were not followed.

Incident Synopsis
While attempting to replace a rupture disk in a liquid H2 vessel, H2 gas was released and ignited. In fighting the fire, liquid N2 was sprayed onto a second liquid H2 vessel located nearby. This resulted in cracking of the outer mild steel vacuum jacket. The loss of the vacuum caused a rapid increase in pressure and rupture of the burst disk of the second vessel. H2 boiled off and was burned in the fire.

Cause
The rupture disk was being replaced with a load of liquid H2 in the vessel and no separating inerting gas. The H2-air mixture was probably ignited by static discharges. Rupture of the second vessel burst disk was caused by the low-temperature exposure of the mild steel vacuum jacket.

Incident Synopsis
During pressure testing of a H2 tank for investigation of quick-release manhole cover, the tank burst at a pressure between 60-67 psig. Flow regulators indicated peak pressure of 67 psig.

Cause
The tank was over pressurized. A mistake was made in interpreting the blueprint, believing the tank was designed to withstand 150 psig, yet the actual design limit was 50.7 psig.

Summary

A hydrogen generation plant experienced a fire and significant damage due to a concussive combustion event that started in a high-pressure hydrogen feed pipe.

System Description

A certain hydrogen plant is designed to continuously produce hydrogen at a purity of 99.75% and at a rate of 510 m3 per day. Hydrogen is produced in two banks of cells filled with a strong solution of caustic soda. Current is passed through the cells to produce hydrogen and oxygen. The oxygen is vented directly to the atmosphere, while the hydrogen is piped to the gasholder. The gasholder is a low-pressure storage vessel capable of storing 28 m3 of gas. It is constructed in two parts. The bottom section is a large round tank. The upper section is an inverted tank or bell that is view more