Skip to main content

Outside storage is generally considered safer and is required for large amounts of gas. Stationary storage should be located outside at a safe distance from structures and ventilation intakes, and protected from vehicle impact. 

Hydrogen storage separation distance requirements are typically based on the quantity and pressure of the hydrogen or the piping diameter, depending on the…

Category: Hazards Analysis
Keywords: Safety, Outdoors, Storage, Requirements, NFPA 2

In general, indoor storage should be limited and the use of hydrogen indoors should be the least necessary. Look to store flammable gases outdoors in dedicated protected area when practicable. Check to see what adopted building and fire codes in your jurisdiction say. NFPA 2, Hydrogen Technology Code, Sections 6.4.1 and 16.3 prescribe requirements to limit hydrogen storage and use in…

Category: Miscellaneous
Keywords: Storage, Cylinder, Indoors, Codes, NFPA

Sprinkler systems and other fire suppression means are prescribed per building and fire codes to limit fire spread to other materials. In the case of a hydrogen leak and fire, it is best practice to isolate the hydrogen source, and let any residual hydrogen gas burn out. Even if the initial fire is extinguished, additional leaking hydrogen may accumulate and ignite with the potential for an…

Category: Hazards Analysis
Keywords: Fire Protection, Codes, Leak, Explosion

There are several resources that can help review designs, such as the Hydrogen Safety Panel and other outside consultants that are members of the Center for Hydrogen Safety.

Category: System Design
Keywords: Testing, System Design

Because hydrogen leaks frequently ignite, and because about half the time the ignition source is not identified, when evaluating hazards with hydrogen leaks, many people just assume the leak will be ignited. Note that consideration needs to be made for what may happen with immediate ignition (jet fire) and what may happen with delayed ignition (explosion). 

It is still important to…

Category: Miscellaneous
Keywords: Ignition, Delayed Ignition, Prevention, Minimum Ignition Energy (MIE)

See H2Tools, Best Practices: Purging, for a description of different purging approaches for hydrogen systems.

Category: System Design
Keywords: Purge, Requirements, System Design

If the concentration of hydrogen is less than the Lower Flammability Limit (LFL) of 4% in an inert gas, it is unlikely that a leak of this gas mix will form a flammable mixture as it dilutes into air. For example, industry uses ‘forming gas’, a mixture of 4 to 5% H2 in nitrogen, as an oxide reducing agent in materials processing furnaces and soldering operations. This mixture can also be used…

Category: Hazards Analysis
Keywords: Mixed Gas, Detector, Gas detector, Leak, Lower Flammability Limit (LFL)

The key concern with any hydrogen release is the risk of creating a flammable mixture. There should be no environmental issues if you properly vent hydrogen to a safe area where it is diluted in air below the flammability limit before contacting an ignition source. Very small quantities of hydrogen are frequently releasing into a fume hood. Releases have to be small enough so that the vent air…

Category: Hazards Analysis
Keywords: Mixed Gas, Environment, Flammability, Lower Flammability Limit (LFL), Vent Stack, NFPA 2

Using tools inside a fume hood that may have a flammable gas mixture should be prohibited. A properly operating hood of the right capacity should keep the mixture of hydrogen in air inside the hood below the Lower Flammability Limit (LFL) of hydrogen further reducing any risk. 

If the use of tools is necessary, the source of hydrogen should be isolated before the work begins even if…

Category: Hazards Analysis
Keywords: Mixed Gas, Lower Flammability Limit (LFL), Leak, Spark-resistant

Frequency and severity off consequences are situational and subject to the safety review team’s best judgement. One measure of severity is an estimate of the energy released if ignited. Assuming the worst-case mix to be stoichiometric, the energy content of a 500 mL of hydrogen in air is about 0.2 Wh (700 Joules), comparable to the energy release of a wooden, blue-tipped matchstick (~1kJ or 1…

Category: Hazards Analysis
Keywords: Risk Assessment, Guidelines, Hazards Analysis
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts