Skip to main content
Disclaimer- The documents and references herein are for information purposes only and should not be construed as endorsement by the Hydrogen Safety Panel.
gradient background
Sodium chloride and four or five other particulate materials have been used successfully as fire suppression agents for specific combustible metal fires. The certification testing and National Fire Protection Association recommendations for using these suppression agents are summarized here. The sodium chloride based agent and ordinary sand have also been used in some sodium hydride fires, and in a sodium hydride fire test series.
gradient background
The three-year HyTunnel CS project culminated in the report titled Deliverable D6.9, “Recommendations for inherently safer use of hydrogen vehicles in underground traffic systems.” The HyTunnel CS project aimed to perform pre-normative research for the safety of hydrogen-fueled vehicles traveling through tunnels or entering confined spaces. The main objective was to compare the relative risk of hydrogen vehicles entering underground traffic systems to existing fossil fuel-powered vehicles [1].
stockimage-gradient
The Baker-Strehlow-Tang vapor cloud explosion (VCE) blast load prediction methodology utilizes flame speed as a measure of explosion severity. In previous publications, guidance has been presented for selecting flame speeds as a function of congestion, confinement, and fuel reactivity. These recommended values were based on empirical data available from the literature.
Stockimage_gradient
Qualified Individual for Liquid Hydrogen
Author(s)
Hydrogen Safety Panel
The HSP has reviewed many safety plans for gaseous hydrogen. An emerging trend is the use of liquid (cryogenic) hydrogen in the commercial market, potentially near residential areas, for fueling hydrogen fuel cell vehicles. Finding a “qualified” person to determine liquid hydrogen code compliance is difficult, and the skills necessary of such an individual are not well defined in the codes and standards.
Stockimage_gradient
The purpose of this guide is to assist users of codes and standards that apply to hydrogen application and use in understanding and applying the approval, certification, listing, and labeling provisions of the codes and standards, in any application where the required certification, listing, and labeling of services, methods, or equipment has not yet been established or achieved.  
Stockimage_gradient
The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards.  The Panel’s initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment.
Stockimage_gradient
Secondary Protection for 70 MPa Fueling 
Author(s)
Hydrogen Safety Panel
In developing a 70 megapascal (MPa) fueling infrastructure, it is critical to ensure that a vehicle equipped with a lower service pressure fuel tank is never filled from a 70 MPa fueling source. Filling of a lower service pressure vehicle at a 70 MPa fueling source is likely to result in a catastrophic event with severe injuries or fatalities. The Hydrogen Safety Panel recommends that DOE undertake a two‐step process to address this issue.
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts