A subcontractor employee was using a band saw to cut a 1" metal pipe when a flash fire occurred on the third floor hydrogen fluoride area. Subcontractor employees were removing all piping associated with the Anhydrous Hydrofluoric Acid (AHF) system. These lines were being removed during plant decontamination and demolition (D&D). The subcontractor employee was attempting to cut a 90-degree elbow located at the highest elevation on the 1" line, but the lowest elevation of the overall piping run. Since hydrogen is lighter than air, it is speculated that a minute amount of hydrogen gas had accumulated in the elbow.

Even though Safe Shutdown personnel had previously opened the system and placed it in a safe configuration, residual hydrogen fluoride could have still view more

The hydrogen feed system for the furnaces inside a pit furnace developed a leak. The leak was on the hydrogen dryer inside a shack attached to a building. The leak vented 200 psig hydrogen into the shack. The hydrogen low-pressure alarm sounded. No furnace operators were present at the time. An estimated 10,000 standard cubic feet of hydrogen vented. T

he hydrogen release was caused by a failure of an elastomeric pressure seal on the body of a particulate filter located in the hydrogen supply circuit of the Pit Furnace. After a similar event a month earlier, the cause was identified as a simple seal failure; however an independent engineering review after the present incident showed the cause to be system overpressure, caused by regulator failure.

A brazing retort in a shop malfunctioned and resulted in an explosion that propelled the retort shell to the roof of the brazing area and then back to the floor. There were no injuries but damage was sustained by the furnace housing and the retort shell.

Administrative personnel were soon on the scene to make a preliminary assessment of the situation. An expert safety team was retained to assist in the investigation of the explosion. The safety team conducted their initial field investigation on the afternoon of the explosion and again on the following day.

Once it was determined that the explosion was the result of an ignition of a flammable mixture of hydrogen and air, the next step was to determine how air ended up in the retort, given that the retort is nominally view more

A facility manager was notified that an authorization basis requirement, associated with roofing contractor work, had not been met. The requirement was that an unused hydrogen gas cylinder adjacent to the building and not connected to a manifold be removed prior to the use of propane tanks for the hot tar portion of the work.

The project manager failed to remove the extra gas bottle as required because he did not recognize from the bottle color and lack of stencil that the bottle contained hydrogen.

An explicit checklist containing all the administrative controls and requiring careful inspection was not available at the time of the inspection. The checklist preparation also would have made obvious the fact that administrative controls had been established. The project view more

An operator began preparations for a cleaning run, and was unaware that a maintenance task to calibrate a pressure transducer was scheduled to also take place that morning. The calibration required a break on a hydrogen line in order to install a Measuring and Test Equipment (M&TE) gage, which was used in the calibration. At the time the operator was informed of the calibration, the cleaning run procedure had been initiated but the actual cleaning had not yet begun. A discussion between his supervisor and the facility maintenance coordinator resulted in a decision to proceed with the maintenance task and suspend the cleaning run until afterwards.

The operator evacuated the hydrogen line and the hydrogen cylinder was valved out. The maintenance work package procedure had view more

A shop supervisor determined that a second shift would be necessary to complete some priority work on the spare hydrogen mitigation pump. The work scope for the shift would be dedicated to continued fabrication of designed tubing runs, repairs to existing tubing with known leaks and pressure testing of other various tubing runs. The shift craft complement would include three pipe fitters, one welder, one QC inspector and a shift supervisor.

The shift remained under normal operations prior to the event. There had been no existing problem up until the point that craft personnel implemented some hydrostatic pressure testing on some tubing runs on the spare hydrogen mitigation pump. Work activities associated with the hydrostatic testing were to be in accordance with the Hydrostatic view more

A guest student was weighing out less than 200 mg of sodium hydride. The material reacted with moisture in the air, producing hydrogen. The heat of the reaction ignited the hydrogen on the end of the spatula being used to transfer the material and at the mouth of the bag holding the stock material (approximately 48 to 50 g). The student attempted to smother the flames with a cotton lab coat hanging nearby. He quickly determined that the lab coat was insufficient to smother the flames and entered the adjoining lab to get a fire extinguisher and warn other lab workers in the area. The other lab workers exited the lab, warned others in the area, pulled the fire alarm and called the laboratory shift supervisor. The student extinguished the fire with the fire extinguisher, then left the view more

As a prerequisite to a storage tank slurry pump run, a tank operator identified a Lower Flammability Limit (LFL) Analyzer surveillance reading to the control room that was out of limits low. The reading was a negative zero % LFL indication (-0 % LFL). The tank operator roundsheet limits are 0 to 10% LFL. The "null" value (value read on analyzer when air with 0% LFL is drawn through the analyzer) as directed by the LFL Analyzer loop calibration procedure is set between 0 and 4% LFL.

To alert personnel to the buildup of potentially dangerous levels of explosive gases in the tank, a Combustible Gas Detection System is used to monitor and analyze sample air drawn from the tank vapor space. This system consists of a sensing element, a 4-20 milliAmp direct current (mADC) view more

A waste pretreatment tank operator was performing surveillance rounds on a tank and found the Composite Lower Flammability Limit (CLFL) Analyzer sample flow reading 1.4 cubic feet per hour (CFH). The Operational Safety Requirements (OSR) document required flow range is 1.5 CFH to 2.5 CFH. The Limiting Condition for Operation was immediately entered and the tank operator adjusted the flow into the required surveillance range.

The hydrogen and CLFL monitors are used to detect the presence of flammable gases in waste tanks vapor space. Maintaining the concentration of flammable vapors in the tank vapor space below flammability limits maintains tank integrity by preventing the possibility of tank deflagrations. The hydrogen monitors provide an automatic means to monitor flammable view more

A facility replaced the copper tubing used for hydrogen distribution, with stainless steel tubing. This was done to address a fire protection concern related to the solder on the copper tubing being susceptible to heat, melting, and releasing a flammable gas. The facility maintenance personnel completed the replacement, noted the pressure on the hydrogen bottle, and left the building. When the maintenance person returned on the following day, s/he noticed the pressure on the hydrogen bottle had dropped 500 psi overnight, indicating a leak in the system. S/he notified the appropriate facility personnel and together they began to determine why the hydrogen had dropped 500 psi overnight. The hydrogen line originates at a manifold, which is part of a glove box atmosphere purification view more