What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

During maintenance on a breakaway fitting, a review of the pressure rating of the adapter fitting connecting the pipe to the breakaway found the adapter to be under rated for the design pressure. While the male straight-thread side of the "standard" fitting was rated to 7700 psig, the female compression-tube end of the same fitting was rated to only 4900 psig. The adapter was replaced with a fitting of increased wall thickness meeting the design pressure rating.

The cap on a full cylinder of hydrogen was difficult to remove. A wrench was applied to turn the cap. When the cap was turned, a part of the wrench contacted the valve and opened it. Since the cap was still on the cylinder, the valve could not be closed. The area was evacuated until the cylinder had emptied.

A fatal accident took place at an onshore processing facility for slop water from the offshore petroleum industry.

Drilling fluids, or mud, are typically oil-water emulsions consisting of base oil (continuous phase), water (dispersed phase), and emulsifying agents. Used drilling mud, or slop, is mud enriched with water and rock cuttings from drilling --- typically 60-80% water, 10-20% emulated base oil, and 10-20% rock cuttings. The used drilling fluids are collected in slop tanks on oil platforms and later shipped to onshore facilities for further processing.

On the day of the accident, two operators were trying to remove the lid from a manhole on top of a 1600-cubic meter storage tank. However, they were not able to unscrew the rusted bolts holding the lid in place, and view more

Hydrogen was released near the ground when the vent line from a 13,000-gallon liquid hydrogen storage vessel suffered damage from unusually high winds. The toppled vent line did not shear or tear, but sustained a kink that restricted hydrogen flow and created a back pressure on the vessel relief system.

Repair efforts were hampered by the potential for cold hydrogen gas, a flammability hazard, in the work area. Shut off or redirection of the hydrogen was not possible, and variable breezes made set up of safe zones uncertain. A protocol had not been prepared for this scenario.

 

A steel tube with inner diameter of 6 mm and 10 m length was filled with radiolysis gas (stoichiometric H2-O2 mixture) at 70 bar for boiling water reactor simulations. Via a pneumatic valve, a venting line with similar cross-section and 2 m length, filled with atmospheric air, was connected.

For venting the tube, the valve was opened (fast) and an explosion occurred.

Explanation: Due to diffusion ignition in the leading shock, a flame flashed back into the pre-mixed reservoir and induced a detonation there. The tube system and involved measurement technique was destroyed. For safety reasons, the whole installation was set up in a protective container so that no person or other equipment was threatened.

A pressure relief device (frangible burst disk) on one of a hydrogen delivery tube trailer's 26 tubes failed prematurely and released hydrogen while filling a hydrogen storage tank at a government facility (see Attachment 1). Prior to the filling process, all procedures and safety checks, including connection to the facility's regulator/distribution control system with leak checking and follow-up verification of leak checking by facility personnel, were completed (see Attachment 2 for more details). During the filling process, a person walking near the facility heard the noise of escaping gas that included occasional popping sounds typical of bursts of gas release. Facility personnel were alerted and the tube trailer vendor's incident response team was dispatched to the view more

Two scientists were changing hydrogen gas cylinders in an analytical laboratory. They were in the process of removing the cylinder cap from the new cylinder when a loud hissing noise occurred and they quickly realized that the tank was leaking. After making a quick attempt to shut off the tank, which was not possible, they left the lab and notified their supervisor.

After checking that everyone was out of the lab, the supervisor paged all staff in the vicinity to immediately evacuate to the staging area. Facility management and ES&H management were notified about the situation, and they contacted the local fire department to respond to the site in case the venting gas was ignited.

The first responders arrived quickly and spoke with facility management and the site view more

In early afternoon, a northbound tractor-semitrailer with horizontally mounted tubes filled with compressed hydrogen at approximately 2400 psi (166 bar) was struck by a northbound pickup truck that veered into the semitrailer's right rear axle. According to witnesses, the tractor-semitrailer then went out of control and left the roadway, coming to rest approximately 300 feet (91 meters) from the point of impact. As a result of rotational torque and impact, the end of one tube was sheared off at the bulkhead and left the tube bundle. During the process, some of the tubes, valves, piping, and fittings at the rear of the semitrailer were damaged and released hydrogen. The hydrogen ignited and burned the rear of the semitrailer. In the meantime, the pickup truck had also run off the view more

A leaking liquid hydrogen cryogenic pump shaft during the process of filling a gaseous tube delivery trailer to 2400 psi at a liquid hydrogen transfilling location caused a series of explosions and a fire. After approximately 30 minutes of filling, the operator heard a single loud explosion and then saw flames and ripples from heat generation near the ground in the hydrogen fill area. The operator quickly actuated the emergency alarm system that shut down the cryogenic pump and closed the air-actuated valves on the cryogenic pump supply line. After this shutdown, three smaller explosions were heard as well as the sound of gas releasing from a safety relief valve. The fire department was called to the scene and participated in the final shutdown of the hydrogen system as the fire was view more

An explosion occurred at a chemical plant in an analysis room containing various analyzer instruments, including a gas chromatograph supplied with hydrogen. A contract operator was performing work to install a new vent line to a benzene analyzer that was part of a group of CO2 analyzers, but separate and unrelated to the gas chromatograph. During the process of this work, a plant supervisor accompanying the contract operator doing the work had an indication of flammable gas present on a portable detector. This was in conflict with the fixed gas detector in the analysis room that was indicating that no flammable gas was present. As a precaution, the plant supervisor immediately cut off the hydrogen supply and, along with the contract operator, began the normal task of determining if view more