A distillate dewaxing unit at an oil refinery was undergoing hot hydrogen regeneration of the catalyst when an explosion occurred. Catalyst regeneration is a periodically performed procedure, in which the normal liquid hydrocarbon feed is stopped and a hydrogen-rich gas mixture is fed through the catalyst bed for which the normal operating temperature is raised from 700F to 800F. During the catalyst regeneration process the reactor pressure is increased from normal operating levels just below 600 psig to about 640 psig. A pipe failure occurred as a sudden and complete rupture of the 10-inch diameter line at the exit of one of the two reactors. Security video revealed that the release rapidly exapnded and the hot gas mixture ignited shortly after rupture. A shock wave from the resulting view more

A chemical plant experienced a valve failure during a planned shutdown for maintenance that caused hydrogen to leak from a valve and catch fire. Four chemical reactor chambers in series were being emptied of liquid using hydrogen gas as part of a maintenance procedure. Two heater valves were opened allowing 3000 psi hydrogen to flow in reverse direction to purge the reactor system for approximately 25 minutes. At completion of the purging process, a "light" thud was heard as the reactor empty-out valves are being closed. Smoky vapor was observed coming out of one of the reactor empty-out valves and the valve closing was stopped by the operator. The operator summoned a second operator for help at which time a second "loud" thud was heard with a much larger light and view more

Operators in a powdered metals production facility heard a hissing noise near one of the plant furnaces and determined that it was a gas leak in the trench below the furnaces. The trench carried hydrogen, nitrogen, and cooling water runoff pipes as well as a vent pipe for the furnaces.

Maintenance personnel presumed that the leak was nonflammable nitrogen because there had recently been a nitrogen piping leak elsewhere in the plant. Using the plant's overhead crane, they removed some of the heavy trench covers. They determined that the leak was in an area that the crane could not reach, so they brought in a forklift with a chain to remove the trench covers in that area.

Eyewitnesses stated that as the first trench cover was wrenched from its position by the forklift view more

In the fall of 2007, the operations team began a procedure (a written procedure was being followed) to sample the liquid hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess gaseous hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003.

The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight-inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic gaseous nitrogen (GN2) systems in the view more

A leaking liquid hydrogen cryogenic pump shaft during the process of filling a gaseous tube delivery trailer to 2400 psi at a liquid hydrogen transfilling location caused a series of explosions and a fire. After approximately 30 minutes of filling, the operator heard a single loud explosion and then saw flames and ripples from heat generation near the ground in the hydrogen fill area. The operator quickly actuated the emergency alarm system that shut down the cryogenic pump and closed the air-actuated valves on the cryogenic pump supply line. After this shutdown, three smaller explosions were heard as well as the sound of gas releasing from a safety relief valve. The fire department was called to the scene and participated in the final shutdown of the hydrogen system as the fire was view more

A valve packing started to leak during cold ambient temperatures. A technician was dispatched. He first reduced the pressure to minimize the release and then re-tightened the packing to stop the leak.

The hydrogen sensor at a hydrogen fueling station detected a slight leakage from the ground packing of the flow control valve during refueling. The refueling operation was stopped immediately. The leak was stopped by tightening the ground packing sealing screw, but it started leaking again in about a week.

The flow control valve was disassembled and inspected. Dust was found at the ground seal and the packing was distorted. Leakage was believed to be due to the dust invasion and repeated tightening of the sealing screw. The packing had been used for four years and two months without replacement.

An explosion occurred in an electrolysis system in a commercial facility. Electrolysis of a potassium hydroxide solution is used to produce hydrogen for a hydrogenation processes. The circular electrolysis cells are 1.5 m in diameter and 25 mm thick. Design current for the electrolyzer is 6,000 amps at 1.78 volts. Operating temperature and pressure is 70-90 °C and 435 psig. Hydrogen and oxygen product gases are separated from the electrolyte in separating drums. The system had been operating at the plant for 13 years prior to the explosion. Operating experiences had been generally favorable except for the need to periodically flush the system with water to remove sludge formations.

According to the investigative report, sludge deposits in the electrolyte passages started the view more

An offgas system mishap involved two explosions occurring within an interval of about 3 ½ hours. The first offgas explosion was reportedly caused by a welding operation on an air line adjacent to a hydrogen sensor line containing off gas. The welding arc initiated a detonation within the offgas piping. The detonation was contained by the piping system but blew out the water seal at the base of the vent stack.The second hydrogen explosion in this incident occurred in the stack base area. Hydrogen accumulated in the enclosed base area after the water seal had been blown in the first explosion. The stack base metal door was blown off its hinges from the second explosion, and the reinforced concrete stack was also damaged. A plant employee walking by the stack at the time of the explosion view more

A rupture occurred in a 24-inch gas line in a reformer. The pipe contained hydrogen and carbon monoxide at a pressure of about 400 psi and a temperature of 930 °C. The ruptured section of pipe had a high-temperature alloy steel outer wall, a refractory liner, and a stainless steel inner liner. The refractory lining had been repaired several times before (including three months prior to the incident) because of localized deterioration and hot spots. The repair procedure consisted of cutting a section of pipe, re-pouring the refractory liner, and patch-welding the outer wall.

The first rupture occurred when the 42-inch-long welded section of the pipe suddenly blew out. On-site employees heard a rumble and observed a flame above the ruptured pipe. Before the torch fire at the view more