What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

During restart of an ammonia production plant, syngas (50% hydrogen mixed with methane, ammonia, and nitrogen) leaking from a flange directly downstream of the synthesis reactor ignited. The plant had been shut down for about 90 minutes due to a technical problem. Alerted by the plant fire alarm, the operator activated the emergency shutdown, which isolated and depressurized the synthesis loop. Steam was sprayed onto the leak site to dampen the fire, which was brought under control 55 minutes later. Property damages included pipe insulation, the reactor's protective shutters, concrete fireproofing of the reactor structure, and instrumentation cables within 3 meters of the leak site. The flames did not affect the synthesis reactor itself, which was protected by a deflector. The view more

Severe vibrations caused by broken low-pressure turbine blades damaged the main turbine generator at a nuclear power plant. These vibrations also caused multiple hydrogen leaks at equipment connections to the generator, resulting in hydrogen flames outside of the generator casing that caused minimal damage to the facility. Hydrogen is used to internally cool the plant's electric generators. Water from the fire suppression system and oil released from the turbine lube oil system during the event were contained within the plant, resulting in no impact to the environment. The plant's nuclear systems were unaffected by the event.

Hydrogen was released near the ground when the vent line from a 13,000-gallon liquid hydrogen storage vessel suffered damage from unusually high winds. The toppled vent line did not shear or tear, but sustained a kink that restricted hydrogen flow and created a back pressure on the vessel relief system.

Repair efforts were hampered by the potential for cold hydrogen gas, a flammability hazard, in the work area. Shut off or redirection of the hydrogen was not possible, and variable breezes made set up of safe zones uncertain. A protocol had not been prepared for this scenario.

 

A hydrogenation experiment was being performed under 60 atm hydrogen, inside a high-pressure reactor cell. The experiment was conducted inside a fume hood and left overnight. The hood caught fire during the night, resulting in fire damage to the fixture, hood, and exhaust duct, as well as water damage to much of the building. Based on the local fire department investigation, the fire started from faulty electrical wiring that was used to provide power for reactor cell heating. The electrical fire ignited solvent that was in a dispensing bottle inside the hood, which subsequently overheated the reactor cell, rupturing the seals. The rupture released hydrogen from the cell and attached supply tank, further fueling the fire. Nobody was injured in the incident, and damages were limited. It view more

Hydrogen and chlorine concentrations at a certain plant are measured once each shift. On the morning of the explosion, the hydrogen concentration in the chlorine header leaving the cell bank was 0.47 percent. After passing through the chlorine coolers and liquid/gas separators, the hydrogen concentration of the gas streams increased to 2.5-3.2 percent H2, i.e., 63-80 percent of the lower flammability limit.

About 5 hours after the measurements were made, the DC power to the electrolysis cell bank was shut down because of intermittent power supply problems. At that time, a low-order explosion was heard from the chlorine dryer area of the plant. Thirty seconds later, chlorine gas began escaping from the chlorine header pumps, and another explosion occurred in the electrolysis cell view more

Overview

Hydrogen leaked from the outlet piping of a hydrogen heating furnace at a fuel oil desulfurization cracking unit during normal refinery operation. The leaking hydrogen caused a localized fire. Dilution water for cleaning polythionic acid collected in the drain nozzle after a turnaround shutdown. The chlorine concentration in this dilution water was high because its concentration in the industrial water was originally high. The chlorine in the industrial water was concentrated by the high temperature, after the plant was restarted, and stress corrosion cracking occurred. Hydrogen leaked and was ignited by static electricity or heat.

Incident 

A fire occurred at the fuel oil desulfurization cracking unit of a refinery 257 hours after startup of the plant, view more

Hydrogen was stored in a plant in a 42 ½ ft diameter sphere made of 3/16 inch steel. The sphere was partitioned into two hemispheres by a neoprene diaphragm attached around the equator. Hydrogen was stored under the diaphragm, while the upper hemisphere contained air. An explosion-proof fan was situated in the upper portion of the sphere in order to provide a slight positive pressure on the top of the diaphragm.

When the plant was shut down for a local holiday, the fan on top of the hydrogen sphere was also stopped. During plant startup two days later, a violent explosion occurred in the sphere. The sphere shell was torn into many sections by the explosion, and some of the sections were propelled as far as 1,200 ft. Some of these sections struck flammable liquid storage tanks view more