During restart of an ammonia production plant, syngas (50% hydrogen mixed with methane, ammonia, and nitrogen) leaking from a flange directly downstream of the synthesis reactor ignited. The plant had been shut down for about 90 minutes due to a technical problem. Alerted by the plant fire alarm, the operator activated the emergency shutdown, which isolated and depressurized the synthesis loop. Steam was sprayed onto the leak site to dampen the fire, which was brought under control 55 minutes later. Property damages included pipe insulation, the reactor's protective shutters, concrete fireproofing of the reactor structure, and instrumentation cables within 3 meters of the leak site. The flames did not affect the synthesis reactor itself, which was protected by a deflector. The view more

Severe vibrations caused by broken low-pressure turbine blades damaged the main turbine generator at a nuclear power plant. These vibrations also caused multiple hydrogen leaks at equipment connections to the generator, resulting in hydrogen flames outside of the generator casing that caused minimal damage to the facility. Hydrogen is used to internally cool the plant's electric generators. Water from the fire suppression system and oil released from the turbine lube oil system during the event were contained within the plant, resulting in no impact to the environment. The plant's nuclear systems were unaffected by the event.

Hydrogen was released near the ground when the vent line from a 13,000-gallon liquid hydrogen storage vessel suffered damage from unusually high winds. The toppled vent line did not shear or tear, but sustained a kink that restricted hydrogen flow and created a back pressure on the vessel relief system.

Repair efforts were hampered by the potential for cold hydrogen gas, a flammability hazard, in the work area. Shut off or redirection of the hydrogen was not possible, and variable breezes made set up of safe zones uncertain. A protocol had not been prepared for this scenario.


A hydrogenation experiment was being performed under 60 atm hydrogen, inside a high-pressure reactor cell. The experiment was conducted inside a fume hood and left overnight. The hood caught fire during the night, resulting in fire damage to the fixture, hood, and exhaust duct, as well as water damage to much of the building. Based on the local fire department investigation, the fire started from faulty electrical wiring that was used to provide power for reactor cell heating. The electrical fire ignited solvent that was in a dispensing bottle inside the hood, which subsequently overheated the reactor cell, rupturing the seals. The rupture released hydrogen from the cell and attached supply tank, further fueling the fire. Nobody was injured in the incident, and damages were limited. It view more

Hydrogen and chlorine concentrations at a certain plant are measured once each shift. On the morning of the explosion, the hydrogen concentration in the chlorine header leaving the cell bank was 0.47 percent. After passing through the chlorine coolers and liquid/gas separators, the hydrogen concentration of the gas streams increased to 2.5-3.2 percent H2, i.e., 63-80 percent of the lower flammability limit.

About 5 hours after the measurements were made, the DC power to the electrolysis cell bank was shut down because of intermittent power supply problems. At that time, a low-order explosion was heard from the chlorine dryer area of the plant. Thirty seconds later, chlorine gas began escaping from the chlorine header pumps, and another explosion occurred in the electrolysis cell view more


Hydrogen leaked from the outlet piping of a hydrogen heating furnace at a fuel oil desulfurization cracking unit during normal refinery operation. The leaking hydrogen caused a localized fire. Dilution water for cleaning polythionic acid collected in the drain nozzle after a turnaround shutdown. The chlorine concentration in this dilution water was high because its concentration in the industrial water was originally high. The chlorine in the industrial water was concentrated by the high temperature, after the plant was restarted, and stress corrosion cracking occurred. Hydrogen leaked and was ignited by static electricity or heat.


A fire occurred at the fuel oil desulfurization cracking unit of a refinery 257 hours after startup of the plant, view more

Hydrogen was stored in a plant in a 42 ½ ft diameter sphere made of 3/16 inch steel. The sphere was partitioned into two hemispheres by a neoprene diaphragm attached around the equator. Hydrogen was stored under the diaphragm, while the upper hemisphere contained air. An explosion-proof fan was situated in the upper portion of the sphere in order to provide a slight positive pressure on the top of the diaphragm.

When the plant was shut down for a local holiday, the fan on top of the hydrogen sphere was also stopped. During plant startup two days later, a violent explosion occurred in the sphere. The sphere shell was torn into many sections by the explosion, and some of the sections were propelled as far as 1,200 ft. Some of these sections struck flammable liquid storage tanks view more