What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

While performing hydrogen gas release experimentation by thermally reacting a slurry of ammonia borane powder in silicone oil in a plug flow reactor, a discharge port on the test reactor became loose. A foaming white product was leaking from the fitting and discharging in the direction of the heat tape and insulation (back over the reactor). As a result, hot, reacting slurry flowed out of the port and was exposed to air. In the presence of oxygen, the slurry ignited, producing a green flame. A small green flame was noticed at the leak site and flaming product dripped onto the hood deck surface. The flame at the end of the reactor was ~10-12 inches tall at the highest point. The flame on the deck was ~4-6 inches in height.

The incident occurred behind the lowered sashes in the view more

A closed 20-mL glass scintillation vial containing approximately 5 grams of an aluminum hydride compound ruptured and shattered, likely due to pressure buildup after 6 weeks of storage. The glass vial with aluminum hydride compound was stored inside a closed plastic box. The plastic box with vial was stored within an air-free glove box at room temperature. When the glass vial ruptured, the vial was contained within the plastic box; however, the plastic box door was forced slightly ajar. The ruptured containers and internal materials were fully contained within the glove box. No damage was observed to the glove box and no one was injured. The attached photograph shows the remains of the vial within the plastic box.

A small research sample of approximately 5 grams of aluminum hydride (alane) doped with 2-3 mol % TiCl3 contained within a glass ampoule ruptured after transit while stored in an office cabinet. The rupture was attributed to over-pressurization caused by hydrogen gas buildup within the sample over a four-month period. The glass ampoule, contained within a 0.2-inch thick cardboard shipping tube, was not a pressure-rated container. The rupture resulted in glass chards penetrating the protective cardboard shipping tube. The aluminum hydride, a fine powder, was released from the shipping tube during the pressure release. The fine aluminum powder leaked from the cabinet and set off a local smoke alarm that brought emergency responders to the scene. No personnel were present in the area when view more

A violent reaction occurred while hydrolyzing metal in water. The reactive metal treatment began with a review of the chemical inventory and setup of reaction vessels. The sodium metal was cut in shavings and added one at a time to the reaction vessel. After the second addition, an argon purge was added to disperse hydrogen gas faster. After approximately 10 pieces had been treated, the glass beaker shattered, releasing the contents of the reaction vessel (1 liter) inside the hood and causing the chemist's hand to receive superficial cuts. The process was being performed under a hood with all safety equipment in place. The employee was in personal protective equipment (PPE), but did receive two cuts on his hand through the glove. The treatment of reactive metals was being view more

A 30-milliliter (mL) vacuum bulb, equipped with a glass stopcock, containing one gram of pentacarbonyl manganese hydride exploded in a refrigerator. This caused the breakage of three other containers, releasing some contents into the refrigerator. The chemicals did not react. The refrigerator contained numerous reactive and flammable chemicals, mostly in glass containers.

The damaged containers were removed and relocated under a hood. The refrigerator was then examined for other breakage and inventoried. All breakage was cleaned up. The safety coordinator was notified and began an investigation.

The direct cause of the occurrence was the failure of a glass vacuum bulb, which either fractured due to some unforeseen chemical reaction forming hydrogen gas, or was unable to view more

A small hydrogen fire occurred in a chemical process hood. A chemist was performing an experiment reacting manganese dioxide with hydrogen to produce manganese oxide and water. The chemist had left the process, which would take approximately one hour to complete, and was working in a nearby lab. While the chemist was gone, a second worker heard a pop, saw the hydrogen fire in the hood, and requested the activation of a fire alarm. A third employee in the area activated a manual fire alarm. The chemist, upon hearing the fire alarm, returned to the room, shut off the hydrogen fuel supply, and evacuated the facility. The hydrogen fire lasted for approximately one minute. The remaining small fire was extinguished about 10 minutes later with a HALON portable fire extinguisher by a view more

A researcher was working with hydrogen storage materials in a laboratory. Several other researchers were working in adjacent laboratories.

The researcher had prepared a sample of aluminum deuteride, AlD3, by reacting lithium aluminum deuteride and aluminum chloride in diethyl ether. The actual composition/phase of the material synthesized was unknown, but the researcher had attempted to produce the gamma phase of aluminum deuteride. The synthesis steps used to produce the material were complete and the researcher attempted to seal the material in a glass ampoule for offsite shipment and analysis. The sample size was approximately 1 gram.

The ampoule with the sample had previously been placed under vacuum and had been isolated from the atmosphere. The process for sealing view more

A sulfur deprivation test was conducted in a sealed 250 ml vessel. More hydrogen was generated in this process than was anticipated, and the vessel cracked.