What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

An anhydrous hydrogen fluoride (AHF) lecture bottle spontaneously exploded in a laboratory. No one was injured, but the lab was extensively damaged. The lecture bottle had split along its seam. Its cap and valve assembly were located to the immediate left.

The explosion was caused by hydrogen gas pressure build up in the cylinder. AHF comes in carbon steel cylinders as a liquefied gas under a pressure of 0.9 psi at 70 oF (i.e., the vapor pressure of the liquid). Though cylinders should be passivated with fluorine, which forms a protective coating, over time AHF may slowly react with the iron in a cylinder to form iron fluoride and hydrogen gas. The generation of hydrogen gas may produce cylinder pressures as high as several hundred psi.

A five-pound CO2 cylinder being stored in a compressed gas storage cage at a power plant failed catastrophically and became a missile. The cylinder destroyed the storage cage, then struck one of six stationary hydrogen storage cylinders used as emergency make-up for the hydrogen supply system. One of the hydrogen cylinders was broken away from its mounts and moved 10 feet from its original location. The loss of this cylinder severed the manifold tubing, creating a leak path to the atmosphere for the remaining five hydrogen cylinders. The leaking hydrogen gas apparently self-ignited, engulfing the immediate area. The site fire brigade responded and used hose lines from a distance to provide cooling until the hydrogen supply was consumed. The fire was out within seven minutes, and no off view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more

A hydrogen leak and subsequent explosion occurred when tie-downs on a hydrogen transport trailer securing hydrogen cylinder packages failed. The tie-down failure caused the hydrogen cylinder packages to fall off the trailer and eject some cylinders onto the roadway (see Figure 1). The cause of the accident is unknown, but it appears to be unrelated to hydrogen (i.e., likely tie-down strap weakness or error in properly securing tie-downs). The cylinders contained compressed hydrogen gas at 200 bar (2900 psi). The accident caused some hydrogen cylinders to leak and the associated cylinder package plumbing systems were breached. A spark or other local heat source (e.g., from a nearby vehicle motor) ignited the leaking hydrogen and caused a deflagration/explosion that damaged a car view more

An alarm sounded at a recently inaugurated hydrogen fueling station in a major metropolitan area. One out of a total of 120 high-pressure hydrogen cylinders, located on the roof of the fueling station, failed in service. Gaseous hydrogen was leaking from a screw fitting of the cylinder, but the hydrogen was not ignited. Three hydrogen gas sensors detected the leakage and triggered an alarm that resulted in an immediate emergency shutdown, isolating the leaking high-pressure cylinder bank from the other three banks and notifying the local fire department. No personnel were allowed to enter the roof area, approximately 7-9 meters above ground level.

The police isolated the area around the fueling station within a radius of 200 meters. The maximum content of the leaking cylinder view more

A single-stage regulator "failed" while flowing hydrogen gas from a standard 200 cu.ft. gas bottle. The regulator had functioned properly prior to the event through several on-off cycles. During the event, a solenoid valve was opened to allow hydrogen to flow, when a rather loud noise was noted and gas began flowing out of the pressure relief valve on the side of the regulator. It was noted that the low-pressure gauge on the regulator was "pegged" at the high side (>200 psi). The valve on the bottle was shut off, and hydrogen flow was immediately stopped. Hydrogen flowing out of the relief valve did not ignite. With the bottle shut off, the regulator was removed and replaced with another regulator of the same type, and activities continued.

The failed view more

A fire occurred in a continuous-feed autoclave system (fixed-catalyst-bed tubular reactor) when the rupture disc released, discharging hot oil, oil distillates, and hydrogen gas out a vent pipe into the autoclave cell. The flammable mixture was discharged directly into the cell because there was no system in place to catch or remotely exhaust the autoclave contents. The oil and gas ignited in a fireball that, in turn, ignited nearby combustibles (cardboard and paper), causing a sustained fire. The hydrogen gas and autoclave system were shutoff immediately. However, a lecture bottle containing hydrogen sulfide was heated by the surrounding fire and ultimately ruptured with enough force to cause facility structural damage. (Lecture bottles do not have a pressure-relief device.) The view more

A hydrogen cylinder was initially located in an adjacent laboratory, with tubing going through the wall into the laboratory in use. When the cylinder was moved to the laboratory in use, a required leak check was not performed. Unfortunately, a leak had developed that was sufficient to cause an accumulation of hydrogen to a level above the Lower Flammability Limit. The hydrogen ignited when a computer power plug was pulled from an outlet. The exact configuration of the leak location and the outlet plug is unknown.