A trained operator was blending water, sand, anhydrite, lime, cement, pulverized fly ash, and powdered aluminum in a mixing chamber to produce material for making concrete building blocks. In the blending process, sand and water are mixed to form a slurry, and then the powders are dispensed automatically into the mix by a computer-controlled system. Finally, a slurry of glycol-coated aluminum powder is added in the last few seconds before the mix is discharged into a car, and then molds are filled from the car. Adding aluminum to the mixture results in a small amount of hydrogen gas evolution, which disperses from the car into the surrounding ventilated area and out through roof vents. In addition to being an ingredient of the mix, water also helps to keep the mixture cool.

view more

A fire occurred in a continuous-feed autoclave system (fixed-catalyst-bed tubular reactor) when the rupture disc released, discharging hot oil, oil distillates, and hydrogen gas out a vent pipe into the autoclave cell. The flammable mixture was discharged directly into the cell because there was no system in place to catch or remotely exhaust the autoclave contents. The oil and gas ignited in a fireball that, in turn, ignited nearby combustibles (cardboard and paper), causing a sustained fire. The hydrogen gas and autoclave system were shutoff immediately. However, a lecture bottle containing hydrogen sulfide was heated by the surrounding fire and ultimately ruptured with enough force to cause facility structural damage. (Lecture bottles do not have a pressure-relief device.) The view more

Hydrogen was released near the ground when the vent line from a 13,000-gallon liquid hydrogen storage vessel suffered damage from unusually high winds. The toppled vent line did not shear or tear, but sustained a kink that restricted hydrogen flow and created a back pressure on the vessel relief system.

Repair efforts were hampered by the potential for cold hydrogen gas, a flammability hazard, in the work area. Shut off or redirection of the hydrogen was not possible, and variable breezes made set up of safe zones uncertain. A protocol had not been prepared for this scenario.

 

An operation to increase the pressure within a hydrogen tube-trailer to 6000 psig was in progress when a burst disk failed at approximately 5200 psig and hydrogen was released. A vent line attached to the burst disk was not sufficiently anchored and bent outward violently from the thrust of the release over an approximate 4-inch moment arm, causing considerable damage to the adjacent vent system components. The operation is conducted with personnel present, but fortunately no one was in proximity when the burst disk failed.

Following the incident, the damaged portion of the tube bank, consisting of 6 tubes, was isolated by valves on the system manifold. The operation was resumed with the unaffected portion of the tube bank, possessing another 18 tubes, until a second burst disk view more