During restart of an ammonia production plant, syngas (50% hydrogen mixed with methane, ammonia, and nitrogen) leaking from a flange directly downstream of the synthesis reactor ignited. The plant had been shut down for about 90 minutes due to a technical problem. Alerted by the plant fire alarm, the operator activated the emergency shutdown, which isolated and depressurized the synthesis loop. Steam was sprayed onto the leak site to dampen the fire, which was brought under control 55 minutes later. Property damages included pipe insulation, the reactor's protective shutters, concrete fireproofing of the reactor structure, and instrumentation cables within 3 meters of the leak site. The flames did not affect the synthesis reactor itself, which was protected by a deflector. The view more

A significant hydrogen leak occurred during refueling of the onboard hydrogen storage tank of a fuel cell-powered lift truck while it was completely depowered. The in-tank shutoff solenoid valve had recently been replaced, and this was the initial refueling event after the replacement. The fuel zone access panel was removed to allow constant visual leak checking with Snoop leak-detection fluid. The event occurred during the final pressure testing of the repaired system when an O-ring failed at approximately 4500 psi, releasing the entire contents of the hydrogen tank in about 10 minutes. The dispenser hose/nozzle was immediately disconnected, and the leak location was quickly isolated to the tank/valve interface. A 30-foot boundary around the lift truck was cleared of personnel and view more

Hydrogen alarms went off in a research laboratory and the fire department was called, but no hydrogen leak was detected. The hydrogen system was leak-checked with helium and found to be leak-free except for a very small leak in the manifold area. The manifold leak was fixed, but because of its small size, it was not thought to be the likely source for the hydrogen alarm trigger. While hydrogen was removed from the system for leak-testing, the hydrogen alarm went off again, and again the fire department responded. There was no hydrogen present in the system to trigger this alarm. Other sources within the building were checked to see what may have set off the alarm, but none were found. One research area uses small amounts of hydrogen, but laboratory logs indicate that none was being view more

A researcher was unplugging an electrical cord when 1/8-inch copper tubing supplying nitrogen to a gas chromatograph came in contact with the energized electrical plug, causing an electrical arc. This caused a hole in the copper tubing. A nearby hydrogen line was unaffected.

The bottled gas supply was shut off. Craftsmen were brought in to reinstall the copper tubing, at a safe distance from the electrical outlet.

Only 25 minutes after the normal work shift ended, an explosion occurred at a hydrogen storage and use facility that had been in a non-operational mode for several months while undergoing modifications for future tests. No one was in the facility at the time of the explosion. The event was viewed about 30 seconds after the explosion by two engineers in a blockhouse 1000 feet away. Authorities were notified and calls were placed to other personnel needed to secure the area. About 8 minutes later, the engineers moved to a vantage point about 450 feet from the facility. There they viewed heat waves rising from a central location on the test pad, heard popping sounds similar to gaseous hydrogen (GH2) venting on a burn pond, and suspected that a hydrogen fire was in process. They returned view more

Severe vibrations caused by broken low-pressure turbine blades damaged the main turbine generator at a nuclear power plant. These vibrations also caused multiple hydrogen leaks at equipment connections to the generator, resulting in hydrogen flames outside of the generator casing that caused minimal damage to the facility. Hydrogen is used to internally cool the plant's electric generators. Water from the fire suppression system and oil released from the turbine lube oil system during the event were contained within the plant, resulting in no impact to the environment. The plant's nuclear systems were unaffected by the event.

During maintenance on a breakaway fitting, a review of the pressure rating of the adapter fitting connecting the pipe to the breakaway found the adapter to be under rated for the design pressure. While the male straight-thread side of the "standard" fitting was rated to 7700 psig, the female compression-tube end of the same fitting was rated to only 4900 psig. The adapter was replaced with a fitting of increased wall thickness meeting the design pressure rating.

Hydrogen was released near the ground when the vent line from a 13,000-gallon liquid hydrogen storage vessel suffered damage from unusually high winds. The toppled vent line did not shear or tear, but sustained a kink that restricted hydrogen flow and created a back pressure on the vessel relief system.

Repair efforts were hampered by the potential for cold hydrogen gas, a flammability hazard, in the work area. Shut off or redirection of the hydrogen was not possible, and variable breezes made set up of safe zones uncertain. A protocol had not been prepared for this scenario.


An explosion occurred at a chemical plant in an analysis room containing various analyzer instruments, including a gas chromatograph supplied with hydrogen. A contract operator was performing work to install a new vent line to a benzene analyzer that was part of a group of CO2 analyzers, but separate and unrelated to the gas chromatograph. During the process of this work, a plant supervisor accompanying the contract operator doing the work had an indication of flammable gas present on a portable detector. This was in conflict with the fixed gas detector in the analysis room that was indicating that no flammable gas was present. As a precaution, the plant supervisor immediately cut off the hydrogen supply and, along with the contract operator, began the normal task of determining if view more

Within the International Space Station (ISS) oxygen generator, an increase in differential pressure across a pump supplying return water to a PEM electrolyzer fuel cell stack had persisted over a 4-month period and was approaching the shut-off limit for the system. This decrease in performance was suspected to be caused by water-borne catalyst fines containing platinum black and Teflon®* binder materials, shed by the fuel cell stack, and accumulated within the pump's inlet filter. Maintenance in the field was required.

The system had been designed for factory maintenance, and no contingency had been planned to handle field maintenance for such a circumstance. An initial assessment of hazards for the proposed filter maintenance raised the concern that opening the water line view more