What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

A pressure relief device (frangible burst disk) on one of a hydrogen delivery tube trailer's 26 tubes failed prematurely and released hydrogen while filling a hydrogen storage tank at a government facility (see Attachment 1). Prior to the filling process, all procedures and safety checks, including connection to the facility's regulator/distribution control system with leak checking and follow-up verification of leak checking by facility personnel, were completed (see Attachment 2 for more details). During the filling process, a person walking near the facility heard the noise of escaping gas that included occasional popping sounds typical of bursts of gas release. Facility personnel were alerted and the tube trailer vendor's incident response team was dispatched to the view more

In early afternoon, a northbound tractor-semitrailer with horizontally mounted tubes filled with compressed hydrogen at approximately 2400 psi (166 bar) was struck by a northbound pickup truck that veered into the semitrailer's right rear axle. According to witnesses, the tractor-semitrailer then went out of control and left the roadway, coming to rest approximately 300 feet (91 meters) from the point of impact. As a result of rotational torque and impact, the end of one tube was sheared off at the bulkhead and left the tube bundle. During the process, some of the tubes, valves, piping, and fittings at the rear of the semitrailer were damaged and released hydrogen. The hydrogen ignited and burned the rear of the semitrailer. In the meantime, the pickup truck had also run off the view more

A leaking liquid hydrogen cryogenic pump shaft during the process of filling a gaseous tube delivery trailer to 2400 psi at a liquid hydrogen transfilling location caused a series of explosions and a fire. After approximately 30 minutes of filling, the operator heard a single loud explosion and then saw flames and ripples from heat generation near the ground in the hydrogen fill area. The operator quickly actuated the emergency alarm system that shut down the cryogenic pump and closed the air-actuated valves on the cryogenic pump supply line. After this shutdown, three smaller explosions were heard as well as the sound of gas releasing from a safety relief valve. The fire department was called to the scene and participated in the final shutdown of the hydrogen system as the fire was view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more

A hydrogen leak occurred at a plant's hydrogen fill station when a vendor's hydrogen fill truck trailer pulled away after filling and caught an improperly stored hydrogen fill line. The driver of the hydrogen truck trailer did not properly stow the hydrogen fill line after filling and failed to verify that the hydrogen fill line was clear of the trailer prior to departure. As the driver pulled away from the fill station, the hydrogen fill line caught on the trailer and subsequently pulled on the hydrogen fill station's ground storage tubes distribution manifold. The force of this pull bent the plant's hydrogen distribution manifold and hydrogen began leaking from a threaded connection and from the hydrogen fill line. The truck trailer driver reported hearing a view more

A pressure relief device (PRD) valve failed on a high-pressure storage tube at a hydrogen fueling station, causing the release of approximately 300 kilograms of hydrogen gas. The gas ignited at the exit of the vent pipe and burned for 2-1/2 hours until technicians were permitted by the local fire department to enter the station and stop the flow of gas. During this incident the fire department evacuated nearby businesses and an elementary school, closed adjacent streets, and ordered a high school to shelter in place.

There were no injuries and very little property damage. The corrugated roof on an adjacent canopy over a fueling dispenser was slightly singed by the escaping hydrogen flame, causing less than $300 in damage.

The station's operating systems worked as view more