What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

A 2000-psia-rated gas cylinder (nominal size 10"x1 1/2") was being filled with hydrogen to a target pressure of 1500 psia. The cylinder suffered a failure at an indicated pressure of 1500 psia during filling. Investigation of the failure subsequently revealed that a faulty digital readout had allowed the cylinder to be over-pressurized. There were no safety consequences due to the failure and no damage to the facility or equipment. The cylinder was being filled in a test vault that was specially designed for the high-pressure burst testing of pressure vessels and components. While no over-pressure cylinders were released from the laboratory for use, this incident is being reported to address the potential and subsequent lessons learned.

Investigations revealed that the view more

A five-pound CO2 cylinder being stored in a compressed gas storage cage at a power plant failed catastrophically and became a missile. The cylinder destroyed the storage cage, then struck one of six stationary hydrogen storage cylinders used as emergency make-up for the hydrogen supply system. One of the hydrogen cylinders was broken away from its mounts and moved 10 feet from its original location. The loss of this cylinder severed the manifold tubing, creating a leak path to the atmosphere for the remaining five hydrogen cylinders. The leaking hydrogen gas apparently self-ignited, engulfing the immediate area. The site fire brigade responded and used hose lines from a distance to provide cooling until the hydrogen supply was consumed. The fire was out within seven minutes, and no off view more

An explosion at a coal-fired power plant killed one person and injured 10 others. The blast killed the delivery truck driver who was unloading compressed hydrogen gas, which is used to cool the plant's steam generators. Hydrogen deliveries are routine at the plant, occurring about once a week. Evidence pointed to the premature failure of a pressure-relief device (PRD) rupture disk, which had been repaired by the vendor six months prior to the explosion.

Summary
A hydrogen explosion occurred at a plant, damaging a wall adjacent to the hydrogen storage assembly. The investigation revealed that the explosion was the consequence of deficiencies in components integral to the hydrogen storage assembly, and that this assembly belonged to a supplier contracted to provide hydrogen to the plant. The analysis revealed that had the supplier properly installed and maintained this equipment, this incident would have been prevented. By receiving assurance, on an ongoing basis, that the supplier was properly maintaining this equipment, the company could have also reduced the chance of occurrence of this incident.

Background
A hydrogen supplier was awarded a contract in 1990 to supply the plant with hydrogen as well as to provide view more

Incident Synopsis
While transferring liquid H2 from a tanker, the burst disk ruptured at 50 psi. The pressure limit for the operation was 30 psi.

Cause
The operator turned on the pressure valve and left it unattended, permitting pressure buildup past the allowed 30 psi.

A rupture disc blew on a 20,000-gallon liquid hydrogen tank, causing the vent stack to exhaust cold gaseous hydrogen. Emergency responders were called to the scene. To stabilize the tank, the remaining hydrogen was removed from the tank except for a small volume in the heel of the tank that could not be removed manually. The tank vacuum was lost. Firemen sprayed the tank with water and directed a stream onto the fire exiting the vent stack. The water was channeled directly into the open vent stack, and the exiting residual hydrogen gas (between -423 F and -402 F) caused the water in the vent stack to freeze. The water freezing caused the vent stack to be sealed off, disabling the only exit for the cold hydrogen gas. After a time, the residual hydrogen gas in the tank warmed up, causing view more

A pressure relief device (frangible burst disk) on one of a hydrogen delivery tube trailer's 26 tubes failed prematurely and released hydrogen while filling a hydrogen storage tank at a government facility (see Attachment 1). Prior to the filling process, all procedures and safety checks, including connection to the facility's regulator/distribution control system with leak checking and follow-up verification of leak checking by facility personnel, were completed (see Attachment 2 for more details). During the filling process, a person walking near the facility heard the noise of escaping gas that included occasional popping sounds typical of bursts of gas release. Facility personnel were alerted and the tube trailer vendor's incident response team was dispatched to the view more

A 9,000-gallon (34,069-liter) cryogenic liquid hydrogen storage vessel, installed outdoors at a manufacturing plant in an urban area, over-pressurized and released hydrogen into the atmosphere through a safety relief device (burst disk). When the burst disk released pressure, a loud bang was heard by neighbors and reported to the local police. The police investigated and heard the sound of gaseous hydrogen escaping from the vessel's vent stack, which rose approximately 15-20 feet (4.6-6.1 meters) in the air.

Police called the local fire department. Firefighters entered the facility and told employees inside that there was an explosion on the property and they needed to evacuate. As a precautionary measure, some nearby city buildings were also evacuated and the street was view more

An operation to increase the pressure within a hydrogen tube-trailer to 6000 psig was in progress when a burst disk failed at approximately 5200 psig and hydrogen was released. A vent line attached to the burst disk was not sufficiently anchored and bent outward violently from the thrust of the release over an approximate 4-inch moment arm, causing considerable damage to the adjacent vent system components. The operation is conducted with personnel present, but fortunately no one was in proximity when the burst disk failed.

Following the incident, the damaged portion of the tube bank, consisting of 6 tubes, was isolated by valves on the system manifold. The operation was resumed with the unaffected portion of the tube bank, possessing another 18 tubes, until a second burst disk view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more