A chemical plant experienced a valve failure during a planned shutdown for maintenance that caused hydrogen to leak from a valve and catch fire. Four chemical reactor chambers in series were being emptied of liquid using hydrogen gas as part of a maintenance procedure. Two heater valves were opened allowing 3000 psi hydrogen to flow in reverse direction to purge the reactor system for approximately 25 minutes. At completion of the purging process, a "light" thud was heard as the reactor empty-out valves are being closed. Smoky vapor was observed coming out of one of the reactor empty-out valves and the valve closing was stopped by the operator. The operator summoned a second operator for help at which time a second "loud" thud was heard with a much larger light and view more

A partial pressure sensor for an automated gas environment system (AGES) was not functioning correctly for pure hydrogen flow. While personnel were troubleshooting the problem, a burst disk ruptured resulting in a leak of hydrogen gas and actuation of a flammable gas alarm.

System troubleshooting involved the installation of a small hydrogen gas cylinder and temporary manual valve in an engineered ventilated enclosure adjacent to an instrument sample well. A burst disk associated with the temporary manual valve ruptured upon opening of the gas cylinder valve. The vented gas, exhausting through an engineered exhaust system, triggered the flammable gas detector. Personnel promptly evacuated the area in accordance with established procedures. Appropriate personnel responded to the view more

A single-stage regulator "failed" while flowing hydrogen gas from a standard 200 cu.ft. gas bottle. The regulator had functioned properly prior to the event through several on-off cycles. During the event, a solenoid valve was opened to allow hydrogen to flow, when a rather loud noise was noted and gas began flowing out of the pressure relief valve on the side of the regulator. It was noted that the low-pressure gauge on the regulator was "pegged" at the high side (>200 psi). The valve on the bottle was shut off, and hydrogen flow was immediately stopped. Hydrogen flowing out of the relief valve did not ignite. With the bottle shut off, the regulator was removed and replaced with another regulator of the same type, and activities continued.

The failed view more

A hydrogen leak at the flange of a 6-inch synthesis turbocharger valve in an ammonia production plant ignited and exploded. Hydrogen detectors and the fire alarm alerted the control room, which immediately shut down the plant, and the fire was then extinguished rapidly. There were no injuries caused by the accident, since the operator heard a wheezing sound and was able to run away just before the explosion occurred. The leaking gas was composed of 70% hydrogen at a flow rate of 15,000 cubic meters per hour. Property damages in the turbocharger included electrical cabling, melted siding, and heavily damaged pipes. The ammonia plant was shut down for more than a month.Five days before the incident, a problem with the CO2 absorber column led operators to open the vent downstream of the view more

Unit 1 Plant power was stable at 90% following a plant startup. The Auxiliary Operator (AO) performed a pre-job brief with shift management before adding hydrogen to the main generator. While performing the addition, the AO attempted to verify open a half-inch hydrogen addition valve. The AO was unable to move the valve by hand and mistakenly assumed the valve was stuck on its closed seat. The valve is a normally open valve and the procedure step was to verify the valve was, in fact, open. The AO obtained a pipe wrench to assist in freeing the valve off of its "closed" seat. Using the pipe wrench, the valve handwheel was turned in the open direction. The AO attempted to open the valve by hand again. Unable to move the valve by hand, the pipe wrench was used to further open view more

Only 25 minutes after the normal work shift ended, an explosion occurred at a hydrogen storage and use facility that had been in a non-operational mode for several months while undergoing modifications for future tests. No one was in the facility at the time of the explosion. The event was viewed about 30 seconds after the explosion by two engineers in a blockhouse 1000 feet away. Authorities were notified and calls were placed to other personnel needed to secure the area. About 8 minutes later, the engineers moved to a vantage point about 450 feet from the facility. There they viewed heat waves rising from a central location on the test pad, heard popping sounds similar to gaseous hydrogen (GH2) venting on a burn pond, and suspected that a hydrogen fire was in process. They returned view more

In the fall of 2007, the operations team began a procedure (a written procedure was being followed) to sample the liquid hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess gaseous hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003.

The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight-inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic gaseous nitrogen (GN2) systems in the view more

A steel tube with inner diameter of 6 mm and 10 m length was filled with radiolysis gas (stoichiometric H2-O2 mixture) at 70 bar for boiling water reactor simulations. Via a pneumatic valve, a venting line with similar cross-section and 2 m length, filled with atmospheric air, was connected.

For venting the tube, the valve was opened (fast) and an explosion occurred.

Explanation: Due to diffusion ignition in the leading shock, a flame flashed back into the pre-mixed reservoir and induced a detonation there. The tube system and involved measurement technique was destroyed. For safety reasons, the whole installation was set up in a protective container so that no person or other equipment was threatened.

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more

A valve packing started to leak during cold ambient temperatures. A technician was dispatched. He first reduced the pressure to minimize the release and then re-tightened the packing to stop the leak.