What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

Facility management confirmed that a hydrogen gas cylinder did not comply with the limiting condition for operation (LCO) for flammable gas control systems in the lab's safety requirements. Earlier erroneous calculations had shown that a release of the entire contents of the cylinder into the hood could not reach the lower flammability limit (LFL).

The facility manager determined that the LCO was applicable and immediately entered the action statement in the safety system, which required immediate termination of normal operations in the affected wing of the building. Because normal operations had already been terminated in the wing for HVAC maintenance, further efforts to terminate normal operations were not necessary. The hydrogen cylinder was removed from the hood, thus view more

A health physics technician (HPT) discovered that a scaler in an analytical laboratory was out of P-10 gas (90%Ar and 10% CH4). The HPT went to the building where auxiliary gas cylinders are stored. He located a P-10 gas cylinder and turned to search for a hand-cart. There were no hand-carts present, and the technician had to get one from another room. When he returned to the cylinder storage area, he loaded the wrong cylinder. It contained hydrogen gas instead, however, the two cylinders were next to each other and they were basically identical. The empty cylinder was then replaced by the full one and the scaler was purged for several minutes before it was used. The alpha channel worked well, however, the beta channel did not respond. An instrument technician was contacted to identify view more

An isolated vehicle hydrogen tank needed to be de-fueled, but the standard operating procedure could not be followed because the tank was inoperable and had to be manually vented with a special tool. This intentional release of hydrogen was done outside an R&D facility, but it unintentionally activated two sensors on vehicle bay gas detectors (at 20% LFL) in the adjacent indoor facility. Although each person involved in this activity was qualified to perform the work, the circumstances at the time were unusual.

The cap on a full cylinder of hydrogen was difficult to remove. A wrench was applied to turn the cap. When the cap was turned, a part of the wrench contacted the valve and opened it. Since the cap was still on the cylinder, the valve could not be closed. The area was evacuated until the cylinder had emptied.

Two scientists were changing hydrogen gas cylinders in an analytical laboratory. They were in the process of removing the cylinder cap from the new cylinder when a loud hissing noise occurred and they quickly realized that the tank was leaking. After making a quick attempt to shut off the tank, which was not possible, they left the lab and notified their supervisor.

After checking that everyone was out of the lab, the supervisor paged all staff in the vicinity to immediately evacuate to the staging area. Facility management and ES&H management were notified about the situation, and they contacted the local fire department to respond to the site in case the venting gas was ignited.

The first responders arrived quickly and spoke with facility management and the site view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more

A partial pressure sensor for an automated gas environment system (AGES) was not functioning correctly for pure hydrogen flow. While personnel were troubleshooting the problem, a burst disk ruptured resulting in a leak of hydrogen gas and actuation of a flammable gas alarm.

System troubleshooting involved the installation of a small hydrogen gas cylinder and temporary manual valve in an engineered ventilated enclosure adjacent to an instrument sample well. A burst disk associated with the temporary manual valve ruptured upon opening of the gas cylinder valve. The vented gas, exhausting through an engineered exhaust system, triggered the flammable gas detector. Personnel promptly evacuated the area in accordance with established procedures. Appropriate personnel responded to the view more

An alarm sounded at a recently inaugurated hydrogen fueling station in a major metropolitan area. One out of a total of 120 high-pressure hydrogen cylinders, located on the roof of the fueling station, failed in service. Gaseous hydrogen was leaking from a screw fitting of the cylinder, but the hydrogen was not ignited. Three hydrogen gas sensors detected the leakage and triggered an alarm that resulted in an immediate emergency shutdown, isolating the leaking high-pressure cylinder bank from the other three banks and notifying the local fire department. No personnel were allowed to enter the roof area, approximately 7-9 meters above ground level.

The police isolated the area around the fueling station within a radius of 200 meters. The maximum content of the leaking cylinder view more

A single-stage regulator "failed" while flowing hydrogen gas from a standard 200 cu.ft. gas bottle. The regulator had functioned properly prior to the event through several on-off cycles. During the event, a solenoid valve was opened to allow hydrogen to flow, when a rather loud noise was noted and gas began flowing out of the pressure relief valve on the side of the regulator. It was noted that the low-pressure gauge on the regulator was "pegged" at the high side (>200 psi). The valve on the bottle was shut off, and hydrogen flow was immediately stopped. Hydrogen flowing out of the relief valve did not ignite. With the bottle shut off, the regulator was removed and replaced with another regulator of the same type, and activities continued.

The failed view more

A significant hydrogen leak occurred during refueling of the onboard hydrogen storage tank of a fuel cell-powered lift truck while it was completely depowered. The in-tank shutoff solenoid valve had recently been replaced, and this was the initial refueling event after the replacement. The fuel zone access panel was removed to allow constant visual leak checking with Snoop leak-detection fluid. The event occurred during the final pressure testing of the repaired system when an O-ring failed at approximately 4500 psi, releasing the entire contents of the hydrogen tank in about 10 minutes. The dispenser hose/nozzle was immediately disconnected, and the leak location was quickly isolated to the tank/valve interface. A 30-foot boundary around the lift truck was cleared of personnel and view more