The bulkhead between a liquid hydrogen tank and a liquid oxygen tank failed due to a series of events. Air services to the building were shut down for repairs and the facility had switched to an emergency nitrogen supply. Failure to switch back to service air when it became available, led to the mishap.

The emergency supply became depleted and two valves in the normal nitrogen purge system failed in the open position, releasing the high-pressure nitrogen gas from the manifold into the liquid hydrogen tank. The gas flow raised the liquid hydrogen tank pressure to 4.5 psig. That was sufficient to rupture the bulkhead wall.

A laboratory technician died and three others were injured when hydrogen gas being used in experiments leaked and ignited a flash fire.

The incident occurred in a 5,700-square-foot, single-story building of unprotected non-combustible construction. The building was not equipped with automatic gas detection or fire suppression systems.

Employees in the laboratory were conducting high-pressure, high-temperature experiments with animal and vegetable oils in a catalytic cracker under a gas blanket. They were using a liquefied petroleum gas burner to supply heat in the process.

Investigators believe that a large volume of hydrogen leaked into the room through a pump seal or a pipe union, spread throughout the laboratory, and ignited after coming into contact with the view more

Incident Synopsis
While attempting to replace a rupture disk in a liquid H2 vessel, H2 gas was released and ignited. In fighting the fire, liquid N2 was sprayed onto a second liquid H2 vessel located nearby. This resulted in cracking of the outer mild steel vacuum jacket. The loss of the vacuum caused a rapid increase in pressure and rupture of the burst disk of the second vessel. H2 boiled off and was burned in the fire.

The rupture disk was being replaced with a load of liquid H2 in the vessel and no separating inerting gas. The H2-air mixture was probably ignited by static discharges. Rupture of the second vessel burst disk was caused by the low-temperature exposure of the mild steel vacuum jacket.

Incident Synopsis
During pressure testing of a H2 tank for investigation of quick-release manhole cover, the tank burst at a pressure between 60-67 psig. Flow regulators indicated peak pressure of 67 psig.

The tank was over pressurized. A mistake was made in interpreting the blueprint, believing the tank was designed to withstand 150 psig, yet the actual design limit was 50.7 psig.


A gas-phase explosion in a storage tower with semichemical pulp at a paper mill has possibly been caused by combustion of a mixture of hydrogen and air. The hydrogen was formed by microorganisms in the pulp. Ignition may be due to electric sparks in connection with an electric field in the mist above the pulp.

Accident Description

A gas-phase explosion took place in a 1,300 m3 storage tower for semichemical pulp at a paper mill. The storage tower was 21 m high and equipped with an agitator at the bottom. By a pumping arrangement, the pulp was circulated from the bottom to the top through external pipes connected with the mill (Fig. 1).

On a given day the production was stopped at a time when the storage tower was loaded with 1,000 m3 pulp at a view more

A water treatment plant used an electrolytic process to generate sodium hypochlorite (NaOCl) from sodium chloride (NaCl). The strategy of using liquid sodium hypochlorite for disinfecting water instead of gaseous chlorine (CL2) is popular because the liquid is generally safer and falls under fewer OSHA and EPA standards. The further idea of generating the liquid sodium hypochlorite on an as-needed basis and in limited quantities also has certain obvious safety advantages.

One of the disadvantages of the electrolytic process is that hydrogen gas is also created as a byproduct. The hydrogen is supposed to be vented, by design, to the atmosphere before the liquid sodium hypochlorite passes into a holding tank.

For various reasons, in this instance it is believed that the view more