A researcher was unplugging an electrical cord when 1/8-inch copper tubing supplying nitrogen to a gas chromatograph came in contact with the energized electrical plug, causing an electrical arc. This caused a hole in the copper tubing. A nearby hydrogen line was unaffected.

The bottled gas supply was shut off. Craftsmen were brought in to reinstall the copper tubing, at a safe distance from the electrical outlet.

A fire began in the compression skid for a high-pressure hydrogen fueling station. The initial source of fire was likely a release of hydrogen from a failed weld on a pressure switch. The initial fire cascaded to three stainless steel line failures, release of glycol coolant, and release/combustion of compressor oil. Non-metallic seals and hoses containing hydraulic fluid and coolant melted/burned and caused leakage of the fluid, which was mostly consumed by the fire. The local fire department responded and contained the situation by shutting off the power supply and spraying water on nearby equipment. The compressor skid was a loss and the fire caused moderate damage to surrounding equipment.

A hydrogenation experiment was being performed under 60 atm hydrogen, inside a high-pressure reactor cell. The experiment was conducted inside a fume hood and left overnight. The hood caught fire during the night, resulting in fire damage to the fixture, hood, and exhaust duct, as well as water damage to much of the building. Based on the local fire department investigation, the fire started from faulty electrical wiring that was used to provide power for reactor cell heating. The electrical fire ignited solvent that was in a dispensing bottle inside the hood, which subsequently overheated the reactor cell, rupturing the seals. The rupture released hydrogen from the cell and attached supply tank, further fueling the fire. Nobody was injured in the incident, and damages were limited. It view more

Hydrogen and chlorine concentrations at a certain plant are measured once each shift. On the morning of the explosion, the hydrogen concentration in the chlorine header leaving the cell bank was 0.47 percent. After passing through the chlorine coolers and liquid/gas separators, the hydrogen concentration of the gas streams increased to 2.5-3.2 percent H2, i.e., 63-80 percent of the lower flammability limit.

About 5 hours after the measurements were made, the DC power to the electrolysis cell bank was shut down because of intermittent power supply problems. At that time, a low-order explosion was heard from the chlorine dryer area of the plant. Thirty seconds later, chlorine gas began escaping from the chlorine header pumps, and another explosion occurred in the electrolysis cell view more

SummaryA fire occurred in a battery manufacturing plant that was about to cease operations for the night. The fire caused an estimated $2.4 million in property damage when an electrical source ignited combustible hydrogen vapors.BackgroundThe incident occurred in the forming room, where wet cell batteries were stored for charging on metal racks. The facility had a wet-pipe sprinkler system, but no automatic hydrogen detection equipment.Incident SynopsisAt 11:52 pm, a security guard on patrol noticed a free burning fire in the forming room and notified the fire department. It took fire fighters almost three hours to bring the fire under control.Although the facility was equipped with a wet-pipe sprinkler system, the forming room's branch had been disconnected 10 to 15 years before view more

Incident Synopsis
While a hot air dryer was being used to free a coupling in a hydrogen cryostat (an apparatus used to maintain constant low temperatures), a flash fire occurred. The H2 cryostat was being dismantled.

Causes
The temperature at the center of the cryostat was sufficiently low to liquefy air. The prescribed requirements for purging and bringing the cryostat to room temperature were circumvented. The H2 - air mixture was formed and ignition was assumed to be a spark from an open filament of the dryer.

Incident Synopsis
A technician was welding a cable suspended over a stainless steel H2 instrument line. During the welding process, two holes were accidentally burned through the hydrogen tubing. The operator heard a hissing sound and closed the valve, but the hydrogen had already ignited and it burned his hand while he was feeling for a leak.

Cause
A short during welding caused the pinholes in the tubing containing the gaseous H2.

Incident Synopsis

A hydrogen explosion occurred in an emergency battery container used to transfer fuel elements. The container had five emergency power batteries. Damage was incurred by the explosion.

Cause

The H2 concentration in the container increased because the battery charger had been left on charge. In addition, the container was placed in an un-ventilated airlock. Ignition of the H2-air mixture was believed to be caused by the relays and micro switches activated when the airlock door was opened.

A small electrical fire occurred (due to what is believed to be an electrical short circuit) inside a fuel cell test stand. Subsequently, a nearby hydrogen line made of flexible tubing was melted through and ignited the hydrogen, causing a small fire.

The electrical fire was easily extinguished. The hydrogen flame was extinguished by snuffing the flame, shutting off the gas lines and power to the test stand. No one was injured, but damage was incurred in the test stand.

Causes

An electrical short circuit occurred, causing a small electrical fire.
Electrical fire caused a flexible tubing hydrogen line to melt, thus exposing hydrogen to the fire.

A battery that was left on a charger over a given weekend was used to start a gasoline power generator. This battery was connected in series with another battery and the connection on the negative post was hand tightened. When an attempt was made to start the generator, the battery exploded on approximately the fifth click of the starter solenoid. No damage was done to any equipment or facilities and no one was injured.

The most probable cause of the accident was the severe overcharging of the battery (64 hours at 20 amp/hour). This charging created hydrogen, which combined with air or oxygen and an ignition source to form the explosion. One source of ignition could have been the loosely attached connection to the battery terminal. Another possible source may have been an view more