Operators in a powdered metals production facility heard a hissing noise near one of the plant furnaces and determined that it was a gas leak in the trench below the furnaces. The trench carried hydrogen, nitrogen, and cooling water runoff pipes as well as a vent pipe for the furnaces.

Maintenance personnel presumed that the leak was nonflammable nitrogen because there had recently been a nitrogen piping leak elsewhere in the plant. Using the plant's overhead crane, they removed some of the heavy trench covers. They determined that the leak was in an area that the crane could not reach, so they brought in a forklift with a chain to remove the trench covers in that area.

Eyewitnesses stated that as the first trench cover was wrenched from its position by the forklift view more

An explosion occurred in a 90-ton-per-day incinerator at a municipal refuse incineration facility. Three workers were seriously burned by high-temperature gas that spouted from the inspection door, and one of them died 10 days later. The accident happened during inspection and repair of the furnace ash chute damper. The workers injected water to remove some blockage, and the water reacted with incinerated aluminum ash to form hydrogen, which caused the explosion.

Workers noticed that the post-combustion zone was full of ash and the ash pusher was not working properly, so they tried to remove the ash from the inspection door with a shovel. They discovered a solid layer of "clinker", which is formed by solidification of molten material such as aluminum. The explosion view more

A hydrogen explosion and fire occurred in the benzene unit of a styrene plant in a large petrochemical complex. The unit was being restarted following a scheduled maintenance shutdown. The explosion followed the release of about 30 kilograms of 700-psig hydrogen gas from a burst flange into a compressor shed. Two men were killed and two others were injured. If it had not been a holiday, the death toll and injuries would probably have been much worse.

The operators were bringing the plant online and increasing the hydrogen circulation pressure. About 10-15 seconds before the explosion, they heard a pop and then a loud hiss of pressure being released within the compressor shed. Witnesses reported seeing a white flash and then a large fireball. The fires burned out in 2-3 minutes, view more

A fatal accident took place at an onshore processing facility for slop water from the offshore petroleum industry.

Drilling fluids, or mud, are typically oil-water emulsions consisting of base oil (continuous phase), water (dispersed phase), and emulsifying agents. Used drilling mud, or slop, is mud enriched with water and rock cuttings from drilling --- typically 60-80% water, 10-20% emulated base oil, and 10-20% rock cuttings. The used drilling fluids are collected in slop tanks on oil platforms and later shipped to onshore facilities for further processing.

On the day of the accident, two operators were trying to remove the lid from a manhole on top of a 1600-cubic meter storage tank. However, they were not able to unscrew the rusted bolts holding the lid in place, and view more

A laboratory technician died and three others were injured when hydrogen gas being used in experiments leaked and ignited a flash fire.

The incident occurred in a 5,700-square-foot, single-story building of unprotected non-combustible construction. The building was not equipped with automatic gas detection or fire suppression systems.

Employees in the laboratory were conducting high-pressure, high-temperature experiments with animal and vegetable oils in a catalytic cracker under a gas blanket. They were using a liquefied petroleum gas burner to supply heat in the process.

Investigators believe that a large volume of hydrogen leaked into the room through a pump seal or a pipe union, spread throughout the laboratory, and ignited after coming into contact with the view more

A water treatment plant used an electrolytic process to generate sodium hypochlorite (NaOCl) from sodium chloride (NaCl). The strategy of using liquid sodium hypochlorite for disinfecting water instead of gaseous chlorine (CL2) is popular because the liquid is generally safer and falls under fewer OSHA and EPA standards. The further idea of generating the liquid sodium hypochlorite on an as-needed basis and in limited quantities also has certain obvious safety advantages.

One of the disadvantages of the electrolytic process is that hydrogen gas is also created as a byproduct. The hydrogen is supposed to be vented, by design, to the atmosphere before the liquid sodium hypochlorite passes into a holding tank.

For various reasons, in this instance it is believed that the view more