- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
In most cases, it is not necessary to depressurize hydrogen systems in an emergency. Pressure vessels are usually isolated in an emergency. The best actions to assure safety during an emergency should be identified during the hazard analysis.
Flammable hydrogen releases can result in deflagration and transition to a detonation. Whether the
deflagration transitions to a detonation depends on numerous parameters such as cloud size, hydrogen
concentration, confinement, and congestion. Releases into confined or congested areas are more
susceptible to generating significant deflagration over-pressures and more likely to…
CHS has suitable introductory courses. These, along with a general overview of hydrogen, would
probably suffice until work begins on systems design or actual use occurs. At that time more detailed
courses should be taken by all those involved in these activities.
Underground storage tanks can be either installed in a vault or directly buried. Both offer additional
protection from external impact and fire, but each has unique challenges. Vaults must be properly
ventilated and designed to not create an explosion or asphyxiation risk. Direct burial vessels should not
have any underground leak points and must be protected from corrosion. Both…
Systems should be sited in accordance with national and local standards such as NFPA 2, Hydrogen
Technologies Code. The nature of a trailer filling operation is not much different than a vehicle fueling
station, so the hazards are comparable and similar safeguards such as walls and sensors will apply. These
facilities might be larger and industrial standards and regulations will also…
Exposure between these products is bidirectional. A hazard analysis should consider what happens to
alternate fueling equipment if an incident with one of the fuels occurs. Care must be taken to have the
appropriate separation distance and mitigations according to the applicable codes. Limited experience
with existing stations has shown that these multi-fuel stations can be successful…
Rupture panels can add an additional layer of overpressure protection against internal overpressure. Given the propensity of hydrogen to generate higher over-pressures when ignited compared to other fuels, rupture panels are often part of the safety design for containerized systems. The need for a rupture panel for a specific system will be determined by the system hazard analysis and the…
The vent system should be designed for the temperature at which it operates (ambient for GH2 and Cryogenic for LH2). The outlet of the vent system should be designed for a fire to ensure the mechanical integrity of the vent system.
The supports should also be designed for these temperatures and the associated expansion and contraction.
It should be ensured that moisture…
Vent stacks and building ventilation systems are different and should be analyzed/designed differently. NFPA 2 has different location requirements for vent stack and ventilation system outlets. There are code requirements for elevation, distances from exposures, and between exposures.
There are no specific regulatory or code requirements for vent system separation distances. These…
Several programs can predict this such as HyRAM or PHAST. The inputs are critical to a safe
answer.
This is not a simple answer due to the many types of flame lengths and flame orientations due to pressure and direction. NFPA 2 recommends that vent systems should be designed so that if the safety relief valve is relieving at capacity the radiative heat felt by an individual at grade…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.