Skip to main content

Experimental investigation of highly pressurized hydrogen release through a small hole

Type of Publication
Year of Publication
2014
Authors

S.Heon Han; D. Chang; J.Soo Kim

Abstract

The dispersion characteristics of hydrogen leaking through a small hole from a high-pressure source were investigated experimentally to develop guidelines for determining safety distances for hydrogen stations. Tests were carried out for leaking holes with diameters of 0.5, 0.7 and 1.0 mm and for release pressures of 100, 200, 300 and 400 bar. For these realistic hydrogen leaking conditions, the Froude numbers are so large that the buoyancy effect, manifested by the hydrogen jets bending upward, can be expected to be negligible. Flow visualization was performed using an Nd-YAG laser to confirm that the buoyancy effect was negligible. By letting a thin laser sheet penetrate the center line of a hydrogen jet conveying Al2O3 particles, the particles were illuminated and the hydrogen jet was visualized. The hydrogen concentration was measured by sampling hydrogen at five points along the jet centerline, based on the large Froude number. The measured data were always lower than the isentropic prediction. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

DOI

10.1016/j.ijhydene.2014.03.044

Volume

39

Notes

Times Cited: 0 Chang, DaeJun/C-1791-2011 0

Pagination

9552-9561

Number
17
ISSN Number

0360-3199

We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts