Skip to main content

A functional screen identifies lateral transfer of β-glucuronidase ( ) from bacteria to fungi

Abstract

Lateral gene transfer (LGT) from prokaryotes to microbial eukaryotes is usually detected by chance through genome-sequencing projects. Here, we explore a different, hypothesis-driven approach. We show that the fitness advantage associated with the transferred gene, typically invoked only in retrospect, can be used to design a functional screen capable of identifying postulated LGT cases. We hypothesized that beta-glucuronidase (gus) genes may be prone to LGT from bacteria to fungi (thought to lack gus) because this would enable fungi to utilize glucuronides in vertebrate urine as a carbon source. Using an enrichment procedure based on a glucose-releasing glucuronide analog (cellobiouronic acid), we isolated two gus(+) ascomycete fungi from soils (Penicillium canescens and Scopulariopsis sp.). A phylogenetic analysis suggested that their gus genes, as well as the gus genes identified in genomic sequences of the ascomycetes Aspergillus nidulans and Gibberella zeae, had been introgressed laterally from high-GC gram(+) bacteria. Two such bacteria (Arthrobacter spp.), isolated together with the gus(+) fungi, appeared to be the descendants of a bacterial donor organism from which gus had been transferred to fungi. This scenario was independently supported by similar substrate affinities of the encoded beta-glucuronidases, the absence of introns from fungal gus genes, and the similarity between the signal peptide-encoding 5' extensions of some fungal gus genes and the Arthrobacter sequences upstream of gus. Differences in the sequences of the fungal 5' extensions suggested at least two separate introgression events after the divergence of the two main Euascomycete classes. We suggest that deposition of glucuronides on soils as a result of the colonization of land by vertebrates may have favored LGT of gus from bacteria to fungi in soils.

Year of Publication
2005
Journal
Molecular Biology and Evolution
Volume
22
Issue
2
Number of Pages
308-316+
Date Published
Feb
ISBN Number
0737-4038
Accession Number
WOS:000226465100013
URL
https://www.webofscience.com/wos/woscc/full-record/WOS:000226465100013
DOI
10.1093/molbev/msi018
Short Title
A functional screen identifies lateral transfer of β-glucuronidase ( ) from bacteria to fungi
Alternate Journal
Mol Biol Evol
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts