- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
Nitrogen/helium blends are frequently used to leak test hydrogen systems.
Requirements for TPRD/PRD’s depend on the local regulations. Some jurisdictions require them, some do not. Others make them optional based on results of performance testing.
This is a complicated subject. Thermally activated pressure relief devices can be an important safeguard for hydrogen vessels if properly designed and installed in accordance with code requirement. Requirements vary globally and often depend on the type of vessel and its intended service (e.g. mobile or stationary). However, as with any device, TPRD’s offer both advantages and disadvantages.…
Speed of detection, detection limit, location, and cross-sensitivity are some of many criteria that might be used for selecting a detector. A common setpoint for gaseous hydrogen detection is 25% of LFL, or 1% concentration in air. However, the detection limit also depends on the system and exposure. When specific hazards are likely, detectors may have detection limits in the low-ppm range.…
Leak detection system requirements depend on the system design and applicable codes. The
appropriateness of detection equipment depend on many factors, including the type of system,
application, location, and probability of leaks. For example, hydrogen refueling stations are required by
code to be equipped with leak detection systems.
While hydrogen gas detectors are less effective outdoors, they can be an important safeguard as part of an overall hydrogen system design. They have been used in many cases to automatically shut down equipment and isolate hydrogen supply. Location and type of detectors depend on the system design and siting, but when installed, should be in areas that are most likely to be exposed to hydrogen…
Training personnel and equipping them with portable gas detectors to properly identify the gas that is
leaking can play an important role in both troubleshooting and emergency response.
The manufacturer’s calibration requirements should be followed to ensure proper operation of the
detection system. The requirements will vary depending on the type of detector and the environment in
which they are installed. Calibration can usually be performed by the user/owner if properly trained and
supplied with calibration gas, etc.
Relief device sizing for liquid hydrogen tanks follow recognized standards such as CGA S1.3. The sizing criteria include a worst-case scenario of an engulfing fire with loss of vacuum integrity.
LH2 tanks are unlikely to BLEVE due to the vacuum insulation outer jacket (usually carbon or stainless steel) preventing direct impingement of fire onto the main pressure vessel, as well as the…
There are several levels of documents which can be used to assist with the design, sizing, selection, and installation of the pressure relief device settings for LH2 tanks.
Pressure vessel design codes, such as the ASME Boiler and Pressure Vessel Code will provide minimum requirements for design of pressure vessels (including LH2 tanks), relief devices, and relief systems. However…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.