- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
Composite cylinders can be manufactured to standards written by CSA, ASME, and ISO depending on the application and local requirements. Several ISO standards can serve as the basis for composite cylinder approvals within North America.
Requirements for TPRD/PRD’s depend on the local regulations. Some jurisdictions require them, some do not. Others make them optional based on results of performance testing.
This is a complicated subject. Thermally activated pressure relief devices can be an important safeguard for hydrogen vessels if properly designed and installed in accordance with code requirement. Requirements vary globally and often depend on the type of vessel and its intended service (e.g. mobile or stationary). However, as with any device, TPRD’s offer both advantages and disadvantages.…
No, this is not a common or preferred approach. Isolating the source of hydrogen is the best safety practice. Water systems could extinguish the flame but allow the gas to continue leaking and result in an explosion if reignited.
Situations where extinguishing a hydrogen leak prior to stopping flow is safer are rare. Hydrogen releases have a high potential for inadvertent re-ignition and subsequent explosion. Some vent stacks might be equipped with an extinguishing system, but these often can be more hazardous than allowing a properly designed vent stack to continue to burn until the source is isolated.
Leakage/loss depends on the vessel design. Metallic or metallic lined vessels have extremely low permeability and losses through the vessel walls are typically imperceptible. Conversely, Type IV composite vessels which have non-metallic liners are subject to permeation. They are required to meet maximum permeation rates as part of their certification. Fugitive emissions from piping systems can…
Releases from high pressure hydrogen systems often make a sound. In those cases, sound might be the
easiest way for a person to know there is a hazard. However, leaks can be relatively small and diffuse,
thereby not making much sound, or alternately large and so loud that they can be very difficult to find. In
both cases, it can be hazardous to move into or through an area.
There is no consensus on the “correct” answer. Small leaks of short duration have a much lower
probability of ignition compared to large releases. Ignition probability is affected by the operating
conditions, whether the release is from a leak or vent stack, and the surrounding environment. Since the
probability of ignition is high, hazard analyses will usually assume the hydrogen…
Static is a frequent source of ignition attributed to various hydrogen releases. Low levels of static
electricity are sufficient to ignite hydrogen – air mixtures. Static charges can be created by the
atmospheric disturbances and storms, high velocity particles entrained by the gas impacting stationary
objects, and human activity. Grounding of equipment and operators is important to…
Store flammable gas cylinders such as hydrogen, separated from oxidizing (e.g. oxygen), toxic, pyrophoric, corrosive, and reactive Class 2, 3, or 4 gases. Non-reactive gases, such as helium, may be co-located. See codes and standards such as NFPA 2 [7.2.1.1 Incompatible Materials] for further guidance.
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.