- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
The primary safety standards for applicable to this piping in the U.S. are ASME B31.3, B31.12, and NFPA 2. The editions used should be those adopted by the local jurisdiction. Design of an LH2 piping system should always be conducted and reviewed by engineers experienced in cryogenic piping design. The equipment should also be installed per NFPA 2 and NFPA 55. IT is recommended that the piping…
By definition, liquid hydrogen can BLEVE, but this is highly unlikely. Liquid hydrogen is stored in a double wall tank with vacuum insulation. This protects the primary pressure vessel from direct impingement and the very cold liquid provides self-cooling of the vessel walls. Tanks are also equipped with redundant pressure relief systems that are sized for fire exposure.
Underground storage tanks can be either installed in a vault or directly buried. Both offer additional
protection from external impact and fire, but each has unique challenges. Vaults must be properly
ventilated and designed to not create an explosion or asphyxiation risk. Direct burial vessels should not
have any underground leak points and must be protected from corrosion. Both…
The conversion is based on the condition as determined from a variety of non-destructive techniques which are commonly used for pipeline mechanical integrity programs. Existing natural gas pipelines are frequently evaluated for conversion to hydrogen, hydrogen-natural gas blend, and other fluid services.
The conversion can be done safely if handled with the proper expertise and…
Composite cylinders can be manufactured to standards written by CSA, ASME, and ISO depending on the application and local requirements. Several ISO standards can serve as the basis for composite cylinder approvals within North America.
Hydrogen has been transported safely through pipelines for over 50 years. There are dozens of pipeline networks in safe operation globally, with several individual networks that approach up to 1000 miles.
Significant testing and some demonstration projects are underway to ensure safety. Some of the aspects under investigation include compatibility of the pipe and other materials,…
Leakage/loss depends on the vessel design. Metallic or metallic lined vessels have extremely low permeability and losses through the vessel walls are typically imperceptible. Conversely, Type IV composite vessels which have non-metallic liners are subject to permeation. They are required to meet maximum permeation rates as part of their certification. Fugitive emissions from piping systems can…
Acceptability of materials is highly dependent on the specific application. Applied stress levels, exposure to contaminants, the operating temperature, the partial pressure, and number and magnitude of material stress cycles are some of the factors that affect material selection. Guidance is provided within documents such as ISO 11114, Gas cylinders - Compatibility of cylinder and valve…
Because cast irons are relatively brittle materials, they should generally be avoided in industrial and
transmission pipeline applications. In low pressure applications like residential distribution piping
systems, the use of cast irons is probably acceptable.
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.