- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
Each installation should be evaluated based on the results of a hazard analysis considering both of these
scenarios. Separation distances as listed in documents such as NFPA 2, Hydrogen Technologies Code, are
a minimum starting point but may need to be adjusted based on analysis. Recent work by NFPA 2 has
also included overpressure criteria, but the consequences can vary depending on…
Cylinders used within a laboratory can be used safely by meeting the requirements prescribed in NFPA 2,
Hydrogen Technologies Code, and NFPA 45, Standard on Fire Protection for Laboratories Using Chemicals.
Special consideration should be given to both safe handling and storage of cylinders. Regarding lecture
size cylinders, their small size can make them susceptible to damage and…
Composite cylinders can be manufactured to standards written by CSA, ASME, and ISO depending on the application and local requirements. Several ISO standards can serve as the basis for composite cylinder approvals within North America.
Documents such as NFPA 2, Hydrogen Technologies Code, and the International Fire Code have quantity thresholds that differentiate requirements for the design of systems and enclosures. However, even the smaller quantities present a hazard under specific conditions, especially for systems that have the potential to release hydrogen into a confined or unvented space. Good engineering judgement…
Leakage/loss depends on the vessel design. Metallic or metallic lined vessels have extremely low permeability and losses through the vessel walls are typically imperceptible. Conversely, Type IV composite vessels which have non-metallic liners are subject to permeation. They are required to meet maximum permeation rates as part of their certification. Fugitive emissions from piping systems can…
Dispersion and radiation analysis should be conducted to ensure that the hydrogen cloud will not interfere with the flight path of aircraft. In addition, there may be maximum height requirements due to airport requirements depending on the location of the stack.
Guidance for location of vent stacks is provided by NFPA 2, Hydrogen Technologies Code, which also references CGA G5.5, Hydrogen Vent Systems, for additional guidance. Minimum distances to vent stack outlets should be determined from dispersion and radiation analyses. The height of the vent stack and orientation of the release will affect the minimum separation distance.
Store flammable gas cylinders such as hydrogen, separated from oxidizing (e.g. oxygen), toxic, pyrophoric, corrosive, and reactive Class 2, 3, or 4 gases. Non-reactive gases, such as helium, may be co-located. See codes and standards such as NFPA 2 [7.2.1.1 Incompatible Materials] for further guidance.
NFPA 2 provides Tables in Chapters 7 and 8 that specify the hazardous area classifications surrounding vent stack outlets. These are based on typical vent systems and flows, but are only applicable for smaller systems. The designer of a vent system should apply the principles of documents such as IEC 60079-10-1 (also required by NFPA 2) or NFPA 497 to evaluate larger vent releases where the…
Even if a small experiment is being run inside a fume hood, the best practice is to use a dedicated vent line for hydrogen which vents hydrogen to a safe location outside. This is especially recommended for planned venting. This practice avoids situations where flammable mixtures could develop. Each system is unique and should be evaluated and approved for use independently…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.