- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
No, in nearly all cases, a deluge system is not needed. The proper sizing of relief devices using documents such as CGA S1.3 will ensure that they are of sufficient size to address worst case scenarios. In addition, if the system has been sited per separation distances from exposures in accordance with documents such as NFPA 2, then there should not be a significant risk of fire
exposure.…
There are no differences in the process design of the vent stack since the venting requirements will follow the same sizing and pressure rating requirements regardless of vent configuration. However, vent systems often create liquid air on their exterior due to the cold venting temperatures. Since this liquid air will drip off the stack, it should be diverted such that it does not directly…
Flame arrestors can be installed on hydrogen gas vents. The purpose of a flame arrestor is to prevent the migration of flame backwards and upstream into the vent stack or system itself. Generally, flame arrestors are not needed since: 1) the vent stack should be designed to withstand fire or explosion within the stack, and 2) the process generally does not contain a flammable mixture within it…
The main advantage of a “tee” style design is that the thrust loads at the vent exits are balanced. This means that an unequal force that might push the vent stack over is not present. Generally, the tee is also of the same size as the main vent line, thereby doubling the vent area for less pressure drop. The main disadvantage of a tee stack is that they generally vent with a horizontal…
The most common modes of failure for vent lines is backpressure and thrust forces.
Backpressure failures can be from several causes:
Vent systems are typically open to the atmosphere, so it’s easy to overlook that they must be designed to withstand significant internal pressure. The two primary sources of pressure within vent systems are: 1) backpressure from the flowing gas, and 2) internal deflagration/detonation.
The large flows of gas exiting relief devices and vents will create backpressure within the vent system…
Yes, for all stacks. GH2 has a minimum prescriptive height of 10 ft. There is no minimum prescriptive height for LH2. However, 25 ft has been a best practice for the industry for years. Vent stack outlets that orient the release vertically help reduce the radiation exposure at ground level. Care must be taken to consider varying weather conditions, particularly wind, as well as surrounding…
Generally flaring is not recommended. Normally GH2 is not flared for most hydrogen equipment as the piping diameters are smaller. The largest stacks are the LH2 vent stacks on trailers and on tanks for the main safety valves are 3”. For GH2 systems the flare stacks are generally smaller in diameter.
Flaring is a deliberate ignition of a hydrogen stream. If the hydrogen stream is to…
1. As of January 2024, we are not aware of any public data on incidents or investigations where a hydrogen fired steam boiler exploded.
2. The potential for detonations within a boiler tube would depend on both the equivalence ratio of the hydrogen present and the diameter of the boiler tube.
a. At a minimum, if the circumference of the tube is…
Fuels like gasoline are exempt from OSHA process safety management (PSM) requirements. When asked about the applicability for hydrogen storage larger than 10,000 lb (4500 kg) being used as a fuel, OSHA responded with an interpretation that can be found at https://www.osha.gov/laws-regs/standardinterpretations/…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.