- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
These distances are based primarily on hydrogen piping releases and resultant vapor clouds and jet flames based on pipe diameter and pressure. It’s important to note that many facilities have issues such as confinement and congestion, so it may be applicable to apply contemporary engineering models to assess risk.
There is technically no upper limit for GH2 storage listed within the separation distance tables within Chapter 7 of NFPA 2. For LH2, there is a 75000-gallon upper limit for the LH2 storage separation distance tables within Chapter 8 for LH2.
It’s important to note that many facilities have site specific issues such as large quantities, confinement, and congestion, so it may be…
The Global Asset Protection Services (GAPS) standard was written 20 years ago for property loss prevention at crowded chemical plants and is intended for existing and new oil and chemical facilities to limit explosion over-pressure and fire exposure damage; thus, the purpose is different than NFPA 2. NFPA distances were based on studies from the 1960s as well as qualitative factors that were…
Previous versions of NFPA 55 listed overhead power lines within the separation distance tables with no voltage distinction. The separation distances were 15 ft for GH2 and 25 ft for LH2 for all overhead electrical lines. The current edition of NFPA 2 includes these in overhead utilities; the distance for GH2 and LH2 will vary with pressure and diameter of the hydrogen piping. In practice, high…
This is not an easy question since many factors influence how much hydrogen can be transferred from one vessel at a higher pressure to another one at a lower pressure and the rate at which it can be transferred. The pressure in the higher vessel will fall while that in the lower vessel will rise as gas is transferred, so the flow rate will typically slow down and eventually stop as the…
It varies slightly due to different density of LH2 at different temperatures, but a gallon of LH2 at atmospheric pressure (0 psig) is ~113 SCF of H2. The expansion ratio is about 840:1. In metric units, a liter of LH2 at atmospheric pressure (0 MPa) would expand to about 840 liters of STP of gaseous pressure.
The National Fire Protection Association (NFPA), the Compressed Gas Association (CGA), and the Society of Fire Protection Engineers (SFPE) represent the U.S. fire protection and engineering community, and these organizations publish handbooks and standards/guidelines that describe the properties of hydrogen. There are many other organizations and documents that provide similar…
This is an impossible question to answer without greater understanding of the quantities of hydrogen involved, the types of vessels involved, and the atmospheric conditions. Several companies offer software to model such releases. It’s important to note that there is a high probability of ignition either during the vessel rupture or from nearby ignition sources.
Vaporization of a trapped volume of LH2 will lead to significant increase in pressure due to the very large expansion ratio as the liquid converts to gas. Relief devices are required since the pressure increase is likely to be far in excess of the pressure rating of the system. When vaporized as part of a flowing process, pressure will not increase. As the LH2 is warmed, it undergoes a phase…
A pressure of 600 kPa (87 psi) is relatively moderate, so the combustion properties are similar to those at atmospheric pressure where the autoignition temperature of hydrogen is 585°C.
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.