Skip to main content

No, this is not a common or preferred approach. Isolating the source of hydrogen is the best safety practice. Water systems could extinguish the flame but allow the gas to continue leaking and result in an explosion if reignited.

Category: Hazards Analysis
Keywords: Facility, Deluge, Fire Protection, Explosion

Flammable hydrogen releases can result in deflagration and transition to a detonation. Whether the
deflagration transitions to a detonation depends on numerous parameters such as cloud size, hydrogen
concentration, confinement, and congestion. Releases into confined or congested areas are more
susceptible to generating significant deflagration over-pressures and more likely to…

Category: Hazards Analysis
Keywords: Detonation, Deflagration, Flammable Clouds

There are numerous models that can be used to assess the consequence and risk of leaks and releases.
One such model is HYRAM which is publicly available from Sandia and the US DOE.

Category: Hazards Analysis
Keywords: Leak, Simulation Models, HYRAM, Risk Assessment

Emergency response procedures must be developed for each system based on its design. The
procedures generally include steps to clear personnel from the immediate area, isolate the hydrogen,
shut down the equipment, contact local responders, and protect surrounding equipment/structures until
the hazard is mitigated or the incident is over.

Category: Hazards Analysis
Keywords: Emergency Response

CGA G-5.5 states: All vent stacks shall be grounded and meet the requirements of NFPA 70, National Electrical Code, for integrity and system design and also references NFPA 77, Recommended Practice on Static Electricity, and NFPA 780, Standard for the Installation of Lightning Protection Systems. 

For lightening refer to NFPA 780 and for grounding of the Hydrogen equipment, refer to…

Category: Hazards Analysis
Keywords: Vent Stack, Requirements, Grounding, NFPA

AICHE ELA253 CHS ” Introduction to Hydrogen Safety for First Responders” is a good reference and discusses both LH2 and GH2. LH2 fires are very unusual. LH2 releases usually are GH2 so the fires at either ambient for low flow or the GH2 is a cryo temperature for high flow. Fires from LH2 tanks ignite less frequently than GH2 high-velocity releases. The colder the gas the less potential for…

Category: Hazards Analysis
Keywords: First Responders, Safety, LH2, GH2, Guidelines, Fire Protection

In the U.S., liquid hydrogen fueling stations and dispensing equipment are addressed within NFPA 2, Chapter 11. Dispensing is covered within Section 11.3. When liquefied hydrogen is used as the supply for high pressure gaseous fueling, then Chapter 10 of NFPA 2 would apply.
ISO standards are also being developed for global LH2 fueling protocols.
 

Category: Fueling Stations
Keywords: Fueling Station, FC Vehicles, Dispensing, Charging

If liquid hydrogen usage is sufficiently high at the fueling station, there may be no need to vent any boiloff generated from the LH2 storage tank. Boil-off gas should be minimized through system design, but where needed, the boil-off hydrogen along with any other hydrogen released must be vented through a local vent stack which is constructed to safely vent the hydrogen in accordance with CGA…

Category: Fueling Stations
Keywords: Fueling Station, Boil-off Gas, Venting
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts