- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Contact
- About H2Tools
A "drop and swap" delivery system using tube trailers is a common and accepted method of supply for both industrial and fueling station applications. While NFPA 2 - 2023, paragraph 10.6.3.5 states, "The use of hose in a hydrogen dispensing system shall be limited to vehicle fueling hose," this is intended for the dispenser itself, not the entire fueling station. This does not limit the use of…
Many methods are used to mitigate the risk of a tube trailer hose loss of containment incident. Examples that otherwise exceed code requirements are provided below. These have been deployed in various combinations depending on the risk analysis for a particular system:
Gaseous hydrogen can be stored forever as long as the system integrity is maintained. However, liquid hydrogen is “use it or lose it” and will boil from system heat leak and build pressure unless it is used or vented. This is not usually an issue for continuous use or low-pressure applications which can use hydrogen gas pressure directly from the tank.
For intermittent or high…
NFPA 2 provides Tables in Chapters 7 and 8 that specify the hazardous area classifications surrounding vent stack outlets. These are based on typical vent systems and flows, but are only applicable for smaller systems. The designer of a vent system should apply the principles of documents such as IEC 60079-10-1 (also required by NFPA 2) or NFPA 497 to evaluate larger vent releases where the…
Guidance for location of vent stacks is provided by NFPA 2, Hydrogen Technologies Code, which also references CGA G5.5, Hydrogen Vent Systems, for additional guidance. Minimum distances to vent stack outlets should be determined from dispersion and radiation analyses. The height of the vent stack and orientation of the release will affect the minimum separation distance.
Dispersion and radiation analysis should be conducted to ensure that the hydrogen cloud will not interfere with the flight path of aircraft. In addition, there may be maximum height requirements due to airport requirements depending on the location of the stack.
Documents such as NFPA 2, Hydrogen Technologies Code, and the International Fire Code have quantity thresholds that differentiate requirements for the design of systems and enclosures. However, even the smaller quantities present a hazard under specific conditions, especially for systems that have the potential to release hydrogen into a confined or unvented space. Good engineering judgement…
Each installation should be evaluated based on the results of a hazard analysis considering both of these
scenarios. Separation distances as listed in documents such as NFPA 2, Hydrogen Technologies Code, are
a minimum starting point but may need to be adjusted based on analysis. Recent work by NFPA 2 has
also included overpressure criteria, but the consequences can vary depending on…
Each system should be evaluated for exposure of equipment to jet fires. The design team should develop
a plan to mitigate exposure as part of the hazard analysis. Fire barriers, walls, enclosures, and insulation
systems are frequently installed to meet code requirements where separation distances are not
sufficient or where the probability of exposure to a jet fire is high. Barriers…
Codes and standards to address issues like this one are under development, along with applied research and field trials. As with any new application, appropriate codes and standards must be developed to meet public risk targets.
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.