- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Contact
- About H2Tools
1. As of January 2024, we are not aware of any public data on incidents or investigations where a hydrogen fired steam boiler exploded.
2. The potential for detonations within a boiler tube would depend on both the equivalence ratio of the hydrogen present and the diameter of the boiler tube.
a. At a minimum, if the circumference of the tube is…
Yes, these would be ignitable mixtures. In this case, it does not appear complicated geometry is involved, so 1200 psig pipe should be more than adequate to protect against internal deflagration. The most likely scenario is a "backfire," similar to a car, where ignition occurs too soon and shoots out the open end of the pipe. Consider using an inline deflagration flash arrestor on the…
NFPA 2 provides Tables in Chapters 7 and 8 that specify the hazardous area classifications surrounding vent stack outlets. These are based on typical vent systems and flows, but are only applicable for smaller systems. The designer of a vent system should apply the principles of documents such as IEC 60079-10-1 (also required by NFPA 2) or NFPA 497 to evaluate larger vent releases where the…
Guidance for location of vent stacks is provided by NFPA 2, Hydrogen Technologies Code, which also references CGA G5.5, Hydrogen Vent Systems, for additional guidance. Minimum distances to vent stack outlets should be determined from dispersion and radiation analyses. The height of the vent stack and orientation of the release will affect the minimum separation distance.
Dispersion and radiation analysis should be conducted to ensure that the hydrogen cloud will not interfere with the flight path of aircraft. In addition, there may be maximum height requirements due to airport requirements depending on the location of the stack.
Documents such as NFPA 2, Hydrogen Technologies Code, and the International Fire Code have quantity thresholds that differentiate requirements for the design of systems and enclosures. However, even the smaller quantities present a hazard under specific conditions, especially for systems that have the potential to release hydrogen into a confined or unvented space. Good engineering judgement…
Each installation should be evaluated based on the results of a hazard analysis considering both of these
scenarios. Separation distances as listed in documents such as NFPA 2, Hydrogen Technologies Code, are
a minimum starting point but may need to be adjusted based on analysis. Recent work by NFPA 2 has
also included overpressure criteria, but the consequences can vary depending on…
Each system should be evaluated for exposure of equipment to jet fires. The design team should develop
a plan to mitigate exposure as part of the hazard analysis. Fire barriers, walls, enclosures, and insulation
systems are frequently installed to meet code requirements where separation distances are not
sufficient or where the probability of exposure to a jet fire is high. Barriers…
Codes and standards to address issues like this one are under development, along with applied research and field trials. As with any new application, appropriate codes and standards must be developed to meet public risk targets.
Systems should be sited in accordance with national and local standards such as NFPA 2, Hydrogen
Technologies Code. The nature of a trailer filling operation is not much different than a vehicle fueling
station, so the hazards are comparable and similar safeguards such as walls and sensors will apply. These
facilities might be larger and industrial standards and regulations will also…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.