- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Contact
- About H2Tools
Leak detection system requirements depend on the system design and applicable codes. The
appropriateness of detection equipment depend on many factors, including the type of system,
application, location, and probability of leaks. For example, hydrogen refueling stations are required by
code to be equipped with leak detection systems.
Speed of detection, detection limit, location, and cross-sensitivity are some of many criteria that might be used for selecting a detector. A common setpoint for gaseous hydrogen detection is 25% of LFL, or 1% concentration in air. However, the detection limit also depends on the system and exposure. When specific hazards are likely, detectors may have detection limits in the low-ppm range.…
Documents such as NFPA 2, Hydrogen Technologies Code, and the International Fire Code have quantity thresholds that differentiate requirements for the design of systems and enclosures. However, even the smaller quantities present a hazard under specific conditions, especially for systems that have the potential to release hydrogen into a confined or unvented space. Good engineering judgement…
Nitrogen/helium blends are frequently used to leak test hydrogen systems.
Each installation should be evaluated based on the results of a hazard analysis considering both of these
scenarios. Separation distances as listed in documents such as NFPA 2, Hydrogen Technologies Code, are
a minimum starting point but may need to be adjusted based on analysis. Recent work by NFPA 2 has
also included overpressure criteria, but the consequences can vary depending on…
Each system should be evaluated for exposure of equipment to jet fires. The design team should develop
a plan to mitigate exposure as part of the hazard analysis. Fire barriers, walls, enclosures, and insulation
systems are frequently installed to meet code requirements where separation distances are not
sufficient or where the probability of exposure to a jet fire is high. Barriers…
Codes and standards to address issues like this one are under development, along with applied research and field trials. As with any new application, appropriate codes and standards must be developed to meet public risk targets.
Systems should be sited in accordance with national and local standards such as NFPA 2, Hydrogen
Technologies Code. The nature of a trailer filling operation is not much different than a vehicle fueling
station, so the hazards are comparable and similar safeguards such as walls and sensors will apply. These
facilities might be larger and industrial standards and regulations will also…
Exposure between these products is bidirectional. A hazard analysis should consider what happens to
alternate fueling equipment if an incident with one of the fuels occurs. Care must be taken to have the
appropriate separation distance and mitigations according to the applicable codes. Limited experience
with existing stations has shown that these multi-fuel stations can be successful…
Previous versions of NFPA 55 listed overhead power lines within the separation distance tables with no voltage distinction. The separation distances were 15 ft for GH2 and 25 ft for LH2 for all overhead electrical lines. The current edition of NFPA 2 includes these in overhead utilities; the distance for GH2 and LH2 will vary with pressure and diameter of the hydrogen piping. In practice, high…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.