Skip to main content
Evaluation of flammability limits of H 2 /O 2 /N 2 mixtures in conditions relevant to nuclear waste transportation
Author(s)
Kouame N'Guessan
M. Idir
Jean Pavageau
Thomas Cuvillier
Nabiha Chaumeix
The aim of the present work is to assess the risk of explosion in closed containments used for the transportation of nuclear materials or nuclear waste. Indeed, it is very well known that hydrogen can be produced due to (i) the radiolysis of different materials within the containment, (ii) the thermal decomposition of mainly the organic part in the containment. Since hydrogen has a very low ignition energy and a very wide flammability domain, it is important to determine the risk of ignition of the subsequent mixture produced by the aforementioned mechanisms.
Hydrogen Embrittlement - NASA
Author(s)
Jonathan A Lee
This Technical Memorandum was originally prepared as an Annex on the topic of Hydrogen Embrittlement for the AIAA Guide to Safety of Hydrogen and Hydrogen Systems (G-095-2004), then in revision [1]. The Guide establishes a uniform NASA process for hydrogen system design, materials selection operation, storage and transportation, and represents a broad collection of aerospace acumen.
In collaboration with Parker Hannifin Corporation, the Fire Safety Branch of the FAA conducted testing to evaluate the effects of three potential failure conditions of hydrogen proton exchange (or polymer electrolyte) membrane fuel cell stacks supplied by Nuvera Fuel Cells. The three conditions examined were a loss of coolant to the stack, short circuit, and a crossflow condition.
Stockimage_gradient
2016 Annual Progress Report
Author(s)
Hydrogen Safety Panel
VIII.6  Hydrogen Safety Panel, Safety Knowledge Tools and First Responder Training Resources
Hydrogen Technologies Safety Guide by NREL
Author(s)
C. Rivkin
R. Burgess
W. Buttner
The purpose of this guide is to provide basic background information on hydrogen technologies.It is not intended to be a comprehensive collection of hydrogen technologies safety information.
reports
2015 Annual Progress Report
Author(s)
Hydrogen Safety Panel
VIII.6  Hydrogen Safety Panel, Safety Knowledge Tools and First Responder Training Resources
The broad use of hydrogen as an energy carrier to tackle the issue of climate change is unavoidable. The emerging hydrogen economy poses new problems to be solved to ensure a level of safety in hydrogen technologies and infrastructure comparable to that for today’s fossil fuels. The pressure of onboard hydrogen storage in early-market
Stockimage_gradient
Secondary Protection for 70 MPa Fueling 
Author(s)
Hydrogen Safety Panel
In developing a 70 megapascal (MPa) fueling infrastructure, it is critical to ensure that a vehicle equipped with a lower service pressure fuel tank is never filled from a 70 MPa fueling source. Filling of a lower service pressure vehicle at a 70 MPa fueling source is likely to result in a catastrophic event with severe injuries or fatalities. The Hydrogen Safety Panel recommends that DOE undertake a two‐step process to address this issue.
Disclaimer- The documents and references herein are for information purposes only and should not be construed as endorsement by the Hydrogen Safety Panel.
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts