Type of Publication
Year of Publication

L.J.M. Juffermans; A. van Dijk; C.A.M. Jongenelen; B. Drukarch; A. Reijerkerk; H.E. de Vries; O. Kamp; R.J.P. Musters


Recent developments in the field of ultrasound (US) contrast agents have demonstrated that these encapsulated microbubbles can not only be used for diagnostic imaging but may also be employed as therapeutic carriers for localized, targeted drug or gene delivery. The exact mechanisms behind increased uptake of therapeutic compounds by US-exposed microbubbles are still not fully understood. Therefore, we studied the effects of stably oscillating SonoVue microbubbles on relevant parameters of cellular and intercellular permeability, i.e., reactive oxygen species (ROS) homeostasis, calcium permeability, F-actin cytoskeleton, monolayer integrity and cell viability using live-cell fluorescence microscopy. US was applied at 1-MHz, 0.1 MPa peak-negative pressure, 0.2%2duty cycle and 20 Hz pulse repetition frequency to primary endothelial cells. We demonstrated increased membrane permeability for calcium ions, with an important role for H(2)O(2). Catalase, an extracellular H(2)O(2) scavenger, significantly blocked the influx of calcium ions. Further changes in ROS homeostasis involved an increase in intracellular H(2)O(2) levels, protein nitrosylation and a decrease in total endogenous glutathione levels. In addition, an increase in the number of F-actin stress fibers and F-actin cytoskeletal rearrangement were observed. Furthermore, US-exposed microbubbles significantly affected endothelial monolayer integrity, but importantly, disrupted cell-cell interactions were restored within 30 min. Finally, cell viability was not affected. In conclusion, these data provide more insight in the interactions between US, microbubbles and endothelial cells, which is important for understanding the mechanisms behind US and microbubble-enhanced uptake of drugs or genes. (E-mail: ljm.juffermans@vumc.nl) (C) 2009 World Federation for Ultrasound in Medicine & Biology.






Times Cited: 49 50



ISSN Number