Type of Publication
Year of Publication
2015
Authors

H. Matsunaga; M. Yoshikawa; R. Kondo; J. Yamabe; S. Matsuoka

Abstract

Slow strain rate tensile (SSRT) tests were performed using smooth specimens of two types of steels, the Cr-Mo steel, JIS-5CM435, which has a tempered, martensitic microstructure, and the carbon steel, JIS-SM490B, which has a ferrite/pearlite microstructure. The tests were carried out in nitrogen gas and hydrogen gas, under a pressure of 115 MPa at three different temperatures: 233 K, room temperature and 393 K. In nitrogen gas, these steels exhibited the so-called cup-and-cone fracture at every temperature. In contrast, surface cracking led to a marked reduction in ductility in both steels in hydrogen gas. Nonetheless, even in hydrogen gas, JIS-SCM435 exhibited some reduction of area after the stress-displacement curve reached the tensile strength (TS), whereas JIS-SM490B demonstrated little, if any, necking in hydrogen gas. In addition, tension-compression fatigue testing at room temperature revealed that these steels show no noticeable degradation in fatigue strengths in hydrogen gas, especially in the relatively long-life regime. Considering that there was little or no hydrogen-induced degradation in either the TS or the fatigue strength in JIS-SCM435, it is suggested that the JIS-SCM435 is eligible for safety factor-based fatigue limit design for hydrogen service under pressures up to 115 MPa. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

DOI

10.1016/j.ijhydene.2015.02.098

Volume

40

Pagination

5739-5748

Number
16
ISSN Number

0360-3199