Skip to main content

Simulation of the Efficiency of Hydrogen Recombiners as Safety Devices

Type of Publication
Year of Publication
E.A. Reinecke; S. Kelm; W. Jahn; C. Jakel; H.J. Allelein

Passive auto-catalytic recombiners (PARs) are used as safety devices in the containments of nuclear power plants (NPPs) for the removal of hydrogen that may be generated during specific reactor accident scenarios. In the presented study, it was investigated whether a PAR designed for hydrogen removal inside a NPP containment would perform principally inside a typical surrounding of hydrogen or fuel cell applications. For this purpose, a hydrogen release scenario inside a garage based on experiments performed by CEA in the GARAGE facility (France) has been simulated with and without PAR installation. For modeling the operational behavior of the PAR, the in-house code REKO-DIREKT was implemented in the CFD code ANSYS-CFX. The study was performed in three steps: First, a helium release scenario was simulated and validated against experimental data. Second, helium was replaced by hydrogen in the simulation. This step served as a reference case for the unmitigated scenario. Finally, the numerical garage setup was enhanced with a commercial PAR model. The study shows that the PAR works efficiently by removing hydrogen and promoting mixing inside the garage. The hot exhaust plume promotes the formation of a thermal stratification that pushes the initial hydrogen rich gas downwards and in direction of the PAR inlet. The paper describes the code implementation and simulation results.

We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts