Type of Publication
Year of Publication
H. Rybin; G. Krainz; G. Bartlok; E. Kratzer

Fuel storage systems for vehicles require a fail-safe design strategy. In case of system failures or accidents,the control electronics have to switch the system into a safe operation mode. Failure Mode and EffectAnalysis (FMEA) or Failure Tree Analysis (FTA) are performed already in the early design phase in order tominimize the risk of design failures in the fuel storage system. Currently, the specifications of requirementsfor pressurized and liquid hydrogen fuel tanks are based on draft UN-ECE Regulations developed by theEuropean Integrated Hydrogen Project (EIHP). Used materials and accessories shall be compatible withhydrogen. A selection of metallic and non-metallic materials will be presented. Complex components have tobe optimised by FEM simulations in order to determine weak spots in the design, which will be overstressedin case of pressure, thermal expansion or dynamic vibrations. According to automotive standards, theperformance of liquid hydrogen fuel tank systems has to be verified in various destructive and non-destructive tests.

Full Text