Skip to main content

High-pressure release and dispersion of hydrogen in a partially enclosed compartment: Effect of natural and forced ventilation

Type of Publication
Year of Publication
2014
Authors

K. Prasad

Abstract

The study of compressed hydrogen releases from high-pressure storage systems has practical application for hydrogen and fuel cell technologies. Such releases may occur either due to accidental damage to a storage tank, connecting piping, or due to failure of a pressure release device (PRD). Understanding hydrogen behavior during and after the unintended release from a high-pressure storage device is important for development of appropriate hydrogen safety codes and standards and for the evaluation of risk mitigation requirements and technologies. In this paper, the natural and forced mixing and dispersion of hydrogen released from a high-pressure tank into a partially enclosed compartment is investigated using analytical models. Simple models are developed to estimate the volumetric flow rate through a choked nozzle of a high-pressure tank. The hydrogen released in the compartment is vented through buoyancy induced flow or through forced ventilation. The model is useful in understanding the important physical processes involved during the release and dispersion of hydrogen from a high-pressure tank into a compartment with vents at multiple levels. Parametric studies are presented to identify the relative importance of various parameters such as diameter of the release port and air changes per hour (ACH) characteristic of the enclosure. Compartment overpressure as a function of the size of the release port is predicted. Conditions that can lead to major damage of the compartment due to overpressure are identified. Results of the analytical model indicate that the fastest way to reduce flammable levels of hydrogen concentration in a compartment is by blowing through the vents. Model predictions for forced ventilation are presented which show that it is feasible to effectively and rapidly reduce the flammable concentration of hydrogen in the compartment following the release of hydrogen from a high-pressure tank. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

DOI

10.1016/j.ijhydene.2014.01.189

Volume

39

Notes

Times Cited: 1 1

Pagination

6518-6532

Number
12
ISSN Number

0360-3199

We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts