Type of Publication
Year of Publication
2016
Authors

X.J. Lv; C.H. Gu; X. Liu; Y.W. Weng

Abstract

This work uses the mathematical model of an intermediate-temperature solid oxide fuel cell and gas turbine (IT-SOFC/GT) hybrid system to study the effects of gasified biomass fuels on system load characteristics. The system performance is investigated by using four types of fuels in each adjusting mode. The relation between the fuel type and load adjusting mode is obtained for users and designers to select the appropriate fuel for reasonable operation modes. Results show that the hybrid system of 182.4 kW has a high electric efficiency of 60.78%2by using wood chip gas (WCG). If cotton wood gas (CWG) and corn stalk gas (CSG) are used, both boundary values of steam to carbon ratio (S/C-bv) and system power are higher, but system efficiencies decrease to 57.36%2and 57.87%2respectively. In the designed three load adjusting modes, the system can reach maximum efficiency over 59%2with four types of biomass gases. If high efficiency and a wide range of load adjustment are required, users can select Case B to use fuels like WCG and GSG. When higher efficiency and low load is expected, Case A is more desirable. With fuels like CWG and CSG, the system has good safety performance in Case C. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

DOI

10.1016/j.ijhydene.2016.04.104

Volume

41

Pagination

9563-9576

Number
22
ISSN Number

0360-3199