Skip to main content
Icon
Blast Wave Generated by Delayed Ignition of Under-Expanded Hydrogen Free Jet at Ambient and Cryogenic Temperatures
Author(s)
Donatella Cirrone
Dmitriy Makarov
Andreas Friedrich
Joachim Grune
Keiji Takeno
An under-expanded hydrogen jet from high-pressure equipment or storage tank is a potential incident scenario. Experiments demonstrated that the delayed ignition of a highly turbulent under-expanded hydrogen jet generates a blast wave able to harm people and damage property. There is a need for engineering tools to predict the pressure effects during such incidents to define hazard distances. The similitude analysis is applied to build a correlation using available experimental data.
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes [1] suggest the use of 60 inclined fire barriers for protection against jet flames in preference to vertical ones. Work by Sandia National Laboratories [2] included experiments and modeling aimed at characterisation of the effectiveness of barrier walls at reducing hazards.
The broad use of hydrogen as an energy carrier to tackle the issue of climate change is unavoidable. The emerging hydrogen economy poses new problems to be solved to ensure a level of safety in hydrogen technologies and infrastructure comparable to that for today’s fossil fuels. The pressure of onboard hydrogen storage in early-market
Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution
Author(s)
Pradheep Kileti
Brian Barkwill
Vincent Spiteri
Christopher Cavanagh
Devinder Mahajan
Natural gas distribution companies are developing ambitious plans to decarbonize the services that they provide in an affordable manner and are accelerating plans for the strategic integration of renewable natural gas and the blending of green hydrogen produced by electrolysis, powered with renewable electricity being developed from large new commitments by states such as New York and Massachusetts. The demonstration and deployment of hydrogen blending have been proposed broadly at 20% of hydrogen by volume.
gradient_image
AS THE WORLD SEEKS TO IDENTIFY alternative energy sources, hydrogen-powered fuel cells offer a broad range of benefits for the environment, the economy, and energy security. Hydrogen fuel cells have the potential to replace the internal combustion engine and to provide power in a wide range of stationary and portable applications.
Blue
Are Unconfined Hydrogen Vapor Cloud Explosions Credible?
Author(s)
C. Eastwood
M. Goodrich
J.K. Thomas
Owner/operators of chemical processing and petroleum refining sites often ask whether unconfined hydrogen vapor cloud explosions (VCEs) can actually occur. This question normally arises during the course of a consequence-based facility siting study (FSS) or a quantitative risk assessment (QRA). While it is generally recognized that a hydrogen release within a process enclosure could lead to an explosion, the potential for an external hydrogen release to cause a VCE is not as widely recognized and is often questioned.
gradient background
Very lean hydrogen vapor cloud explosion testing
Author(s)
W.B. Lowry
D.R. Malik
J.K. Thomas
E. Vivanco
Hydrogen is a key energy carrier for modern society. The breaking of the hydrogen bonds within traditional hydrocarbon molecules has been the primary mode of energy utilization since the industrial revolution. An increased focus on “net-zero” greenhouse gas emissions, specifically carbon dioxide and methane, has resulted in a global push for lower carbon energy vectors, including pure hydrogen.
gradient background
Vented Hydrogen DDTs Deflagration-to-Detonation Transition (DDT) in a Vented Hydrogen Explosion
Author(s)
B. Bang
B. Horn
Y. Kim
M. Lee
D.R. Malik
O. Rodriguez
J.K. Thomas
Baker Engineering and Risk Consultants, Inc. (BakerRisk®) and Daewoo Engineering and Construction Co. Ltd. (Daewoo) performed vented (i.e., partially-confined) vapor cloud explosion (VCE) tests with both propane and lean hydrogen mixtures. BakerRisk’s Deflagration Load Generator (DLG) test rig was used to perform the tests. The DLG test rig was designed primarily to produce centrally-peaked blast waves that are representative of VCEs suitable for blast loading test articles, but has also been used for vented deflagration testing.
Subscribe to Journal Article
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts