The purpose of this guide is to assist users of codes and standards that apply to hydrogen application and use in understanding and applying the approval, certification, listing, and labeling provisions of the codes and standards, in any application where the required certification, listing, and labeling of services, methods, or equipment has not yet been established or achieved.
The HSP has reviewed many safety plans for gaseous hydrogen. An emerging trend is the use of liquid (cryogenic) hydrogen in the commercial market, potentially near residential areas, for fueling hydrogen fuel cell vehicles. Finding a “qualified” person to determine liquid hydrogen code compliance is difficult, and the skills necessary of such an individual are not well defined in the codes and standards.
Natural gas was first used as a vehicle fuel as far back as the 1930s. The first natural gas vehicles, which ran on uncompressed natural gas, were called “gas bag” vehicles and were used to combat gasoline shortages during World War I [1]. During and after World War II, compressed natural gas (CNG) vehicles using fuel tanks mounted on the roof gained popularity in France and Italy [2]. Today, there are more than 24 million CNG vehicles in service worldwide, including CNG buses that continue the early tradition of mounting fuel tanks on the roof.
Safe practices in the production, storage, distribution, and use of hydrogen are essential for the widespread acceptance of hydrogen and fuel cell technologies. A catastrophic failure in any hydrogen project could damage public perception of hydrogen and fuel cells. Given the nascent nature of the mobile hydrogen applications, incidents involving mobile equipment can have detrimental impacts for the public as well as stakeholders and project proponents who are committed to hydrogen’s use as a safe alternative energy resource.
The Hydrogen Safety Panel was established by the U.S. Department of Energy (DOE) to provide independent safety reviews and guidance to contractors in the DOE Hydrogen and Fuel Cells Program. In September 2017, the panel set up a task group to compile select hydrogen incidents from the H2Tools.org Lessons Learned database (https://h2tools.org/lessons) in a publication form for written reference, that are most pertinent to various types of DOE contractor projects. This report is the result of the task group’s work.
This document provides an example safety plan in Attachment A associated with hydrogen and fuel cells, where there is a significant flammability or explosive hazard from quantities, pressures, exposures, or other conditions. Hydrogen is unique among flammable gases in that small quantities may result in ignition or explosions. This example safety plan was developed by Pacific Northwest National Laboratories (PNNL) and its Hydrogen Safety Panel (HSP) members to assist entities working with hydrogen to ensure the protection of life, property, and the environment.
This report provides an evaluation by members of the Hydrogen Safety Panel (HSP) of the June 1, 2019 hydrogen release incident at the Air Products and Chemicals Inc. (Air Products) hydrogen trailer transfill (transfill) facility located in Santa Clara, California. This review was requested by the California Energy Commission (CEC) in May 2020 and examines data from Air Products, and the Santa Clara Fire Department to provide an HSP perspective on the incident cause, response, and recommended follow-up actions.
This document applies to the recovery phase of a typical emergency management framework that includes planning, response, mitigation, and recovery. This document provides practical guidance with a checklist to help an organization recover from a hydrogen incident and return to normal operations after the event scene has been stabilized and returned to the organization by the incident commander. This document does not include activities related to the immediate emergency response and initial investigations performed by other entities.
The information in this document provides answers to the questions that were raised during the Center for Hydrogen Safety September 4, 2023 webinar.
The three-year HyTunnel CS project culminated in the report titled Deliverable D6.9, “Recommendations for inherently safer use of hydrogen vehicles in underground traffic systems.” The HyTunnel CS project aimed to perform pre-normative research for the safety of hydrogen-fueled vehicles traveling through tunnels or entering confined spaces. The main objective was to compare the relative risk of hydrogen vehicles entering underground traffic systems to existing fossil fuel-powered vehicles [1].